基于智能手表的击键推理攻击和上下文感知保护机制

Anindya Maiti, Oscar Armbruster, Murtuza Jadliwala, Jibo He
{"title":"基于智能手表的击键推理攻击和上下文感知保护机制","authors":"Anindya Maiti, Oscar Armbruster, Murtuza Jadliwala, Jibo He","doi":"10.1145/2897845.2897905","DOIUrl":null,"url":null,"abstract":"Wearable devices, such as smartwatches, are furnished with state-of-the-art sensors that enable a range of context-aware applications. However, malicious applications can misuse these sensors, if access is left unaudited. In this paper, we demonstrate how applications that have access to motion or inertial sensor data on a modern smartwatch can recover text typed on an external QWERTY keyboard. Due to the distinct nature of the perceptible motion sensor data, earlier research efforts on emanation based keystroke inference attacks are not readily applicable in this scenario. The proposed novel attack framework characterizes wrist movements (captured by the inertial sensors of the smartwatch worn on the wrist) observed during typing, based on the relative physical position of keys and the direction of transition between pairs of keys. Eavesdropped keystroke characteristics are then matched to candidate words in a dictionary. Multiple evaluations show that our keystroke inference framework has an alarmingly high classification accuracy and word recovery rate. With the information recovered from the wrist movements perceptible by a smartwatch, we exemplify the risks associated with unaudited access to seemingly innocuous sensors (e.g., accelerometers and gyroscopes) of wearable devices. As part of our efforts towards preventing such side-channel attacks, we also develop and evaluate a novel context-aware protection framework which can be used to automatically disable (or downgrade) access to motion sensors, whenever typing activity is detected.","PeriodicalId":166633,"journal":{"name":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Smartwatch-Based Keystroke Inference Attacks and Context-Aware Protection Mechanisms\",\"authors\":\"Anindya Maiti, Oscar Armbruster, Murtuza Jadliwala, Jibo He\",\"doi\":\"10.1145/2897845.2897905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable devices, such as smartwatches, are furnished with state-of-the-art sensors that enable a range of context-aware applications. However, malicious applications can misuse these sensors, if access is left unaudited. In this paper, we demonstrate how applications that have access to motion or inertial sensor data on a modern smartwatch can recover text typed on an external QWERTY keyboard. Due to the distinct nature of the perceptible motion sensor data, earlier research efforts on emanation based keystroke inference attacks are not readily applicable in this scenario. The proposed novel attack framework characterizes wrist movements (captured by the inertial sensors of the smartwatch worn on the wrist) observed during typing, based on the relative physical position of keys and the direction of transition between pairs of keys. Eavesdropped keystroke characteristics are then matched to candidate words in a dictionary. Multiple evaluations show that our keystroke inference framework has an alarmingly high classification accuracy and word recovery rate. With the information recovered from the wrist movements perceptible by a smartwatch, we exemplify the risks associated with unaudited access to seemingly innocuous sensors (e.g., accelerometers and gyroscopes) of wearable devices. As part of our efforts towards preventing such side-channel attacks, we also develop and evaluate a novel context-aware protection framework which can be used to automatically disable (or downgrade) access to motion sensors, whenever typing activity is detected.\",\"PeriodicalId\":166633,\"journal\":{\"name\":\"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897845.2897905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897845.2897905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

可穿戴设备,如智能手表,配备了最先进的传感器,可以实现一系列环境感知应用。但是,如果访问不经过审核,恶意应用程序可能会滥用这些传感器。在本文中,我们演示了如何在现代智能手表上访问运动或惯性传感器数据的应用程序可以恢复在外部QWERTY键盘上键入的文本。由于可感知运动传感器数据的不同性质,早期基于发射的按键推理攻击的研究成果并不容易适用于这种情况。提出的新攻击框架基于键的相对物理位置和键对之间的过渡方向,描述了在打字过程中观察到的手腕运动(由手腕上佩戴的智能手表的惯性传感器捕获)。然后将窃听到的击键特征与字典中的候选单词相匹配。多次评估表明,我们的击键推理框架具有惊人的高分类精度和单词恢复率。通过从智能手表可感知的手腕运动中恢复的信息,我们举例说明了未经审计访问可穿戴设备上看似无害的传感器(例如加速度计和陀螺仪)所带来的风险。作为我们努力防止此类侧信道攻击的一部分,我们还开发和评估了一种新的上下文感知保护框架,该框架可用于在检测到打字活动时自动禁用(或降级)对运动传感器的访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smartwatch-Based Keystroke Inference Attacks and Context-Aware Protection Mechanisms
Wearable devices, such as smartwatches, are furnished with state-of-the-art sensors that enable a range of context-aware applications. However, malicious applications can misuse these sensors, if access is left unaudited. In this paper, we demonstrate how applications that have access to motion or inertial sensor data on a modern smartwatch can recover text typed on an external QWERTY keyboard. Due to the distinct nature of the perceptible motion sensor data, earlier research efforts on emanation based keystroke inference attacks are not readily applicable in this scenario. The proposed novel attack framework characterizes wrist movements (captured by the inertial sensors of the smartwatch worn on the wrist) observed during typing, based on the relative physical position of keys and the direction of transition between pairs of keys. Eavesdropped keystroke characteristics are then matched to candidate words in a dictionary. Multiple evaluations show that our keystroke inference framework has an alarmingly high classification accuracy and word recovery rate. With the information recovered from the wrist movements perceptible by a smartwatch, we exemplify the risks associated with unaudited access to seemingly innocuous sensors (e.g., accelerometers and gyroscopes) of wearable devices. As part of our efforts towards preventing such side-channel attacks, we also develop and evaluate a novel context-aware protection framework which can be used to automatically disable (or downgrade) access to motion sensors, whenever typing activity is detected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generally Hybrid Proxy Re-Encryption: A Secure Data Sharing among Cryptographic Clouds Hardening OpenStack Cloud Platforms against Compute Node Compromises Data Exfiltration in the Face of CSP Anonymous Identity-Based Broadcast Encryption with Constant Decryption Complexity and Strong Security FLEX: A Flexible Code Authentication Framework for Delegating Mobile App Customization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1