烧结厂声学状态监测的深度学习方法

Shahab Pasha, C. Ritz, D. Stirling, P. Zulli, D. Pinson, S. Chew
{"title":"烧结厂声学状态监测的深度学习方法","authors":"Shahab Pasha, C. Ritz, D. Stirling, P. Zulli, D. Pinson, S. Chew","doi":"10.23919/APSIPA.2018.8659486","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of deep learning classification for acoustic monitoring of an industrial process. Specifically, the application is to process sound recordings to detect when additional air leaks through gaps between grate bars lining the bottom of the sinter strand pallets, caused by thermal cycling, aging and deterioration. Detecting holes is not possible visually as the hole is usually small and covered with a granular bed of sinter/blend material. Acoustic signals from normal operation and periods of air leakage are fed into the basic supervised classification methods (SVM and J48) and the deep learning networks, to learn and distinguish the differences. Results suggest that the applied deep learning approach can effectively detect the acoustic emissions from holes time segments with a minimum 79% of accuracy.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Deep Learning Approach to the Acoustic Condition Monitoring of a Sintering Plant\",\"authors\":\"Shahab Pasha, C. Ritz, D. Stirling, P. Zulli, D. Pinson, S. Chew\",\"doi\":\"10.23919/APSIPA.2018.8659486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the use of deep learning classification for acoustic monitoring of an industrial process. Specifically, the application is to process sound recordings to detect when additional air leaks through gaps between grate bars lining the bottom of the sinter strand pallets, caused by thermal cycling, aging and deterioration. Detecting holes is not possible visually as the hole is usually small and covered with a granular bed of sinter/blend material. Acoustic signals from normal operation and periods of air leakage are fed into the basic supervised classification methods (SVM and J48) and the deep learning networks, to learn and distinguish the differences. Results suggest that the applied deep learning approach can effectively detect the acoustic emissions from holes time segments with a minimum 79% of accuracy.\",\"PeriodicalId\":287799,\"journal\":{\"name\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPA.2018.8659486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出将深度学习分类用于工业过程的声学监测。具体来说,该应用程序是处理录音,以检测由于热循环、老化和变质引起的额外空气何时通过烧结股托盘底部篦条之间的间隙泄漏。由于孔洞通常很小,并且覆盖着烧结/混合材料的颗粒床,因此肉眼无法检测孔洞。将正常运行和漏气时段的声信号输入到基本监督分类方法(SVM和J48)和深度学习网络中,学习和区分差异。结果表明,应用深度学习方法可以有效地检测孔洞时间段的声发射,准确率至少为79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Learning Approach to the Acoustic Condition Monitoring of a Sintering Plant
This paper proposes the use of deep learning classification for acoustic monitoring of an industrial process. Specifically, the application is to process sound recordings to detect when additional air leaks through gaps between grate bars lining the bottom of the sinter strand pallets, caused by thermal cycling, aging and deterioration. Detecting holes is not possible visually as the hole is usually small and covered with a granular bed of sinter/blend material. Acoustic signals from normal operation and periods of air leakage are fed into the basic supervised classification methods (SVM and J48) and the deep learning networks, to learn and distinguish the differences. Results suggest that the applied deep learning approach can effectively detect the acoustic emissions from holes time segments with a minimum 79% of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Epileptic Focus Localization Based on iEEG by Using Positive Unlabeled (PU) Learning Image Retrieval using CNN and Low-level Feature Fusion for Crime Scene Investigation Image Database Privacy-Preserving SVM Computing in the Encrypted Domain Graphical User Interface for Medical Deep Learning - Application to Magnetic Resonance Imaging Statistical-Mechanical Analysis of the Second-Order Adaptive Volterra Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1