{"title":"多三维运动目标拦截机器人轨迹规划:多项式插值方法","authors":"J. Campos, J. Flores, C. P. Montufar","doi":"10.1109/CERMA.2008.87","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to on-line, robot-motion planning for multiple 3D moving-objects interception. Using a polynomial interpolation technique. The proposed approach utilizes the time parametric function of one or more moving objects to generate the multiple 3D interception trajectory. This methodology is efficient for the slow-maneuvering objects with constant acceleration in industrial settings, like objects moving on a circular conveyor. The multiple 3D interception trajectory allows the end-effector of a robotic arm to be oriented along the objects trajectory to avoid impact. The implementation of the proposed technique is illustrated via a simulation example. It consists of the multiple 3D interception of two objects moving along a well-known sinusoidal trajectory in the three-dimensional space.","PeriodicalId":126172,"journal":{"name":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robot Trajectory Planning for Multiple 3D Moving Objects Interception: A Polynomial Interpolation Approach\",\"authors\":\"J. Campos, J. Flores, C. P. Montufar\",\"doi\":\"10.1109/CERMA.2008.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to on-line, robot-motion planning for multiple 3D moving-objects interception. Using a polynomial interpolation technique. The proposed approach utilizes the time parametric function of one or more moving objects to generate the multiple 3D interception trajectory. This methodology is efficient for the slow-maneuvering objects with constant acceleration in industrial settings, like objects moving on a circular conveyor. The multiple 3D interception trajectory allows the end-effector of a robotic arm to be oriented along the objects trajectory to avoid impact. The implementation of the proposed technique is illustrated via a simulation example. It consists of the multiple 3D interception of two objects moving along a well-known sinusoidal trajectory in the three-dimensional space.\",\"PeriodicalId\":126172,\"journal\":{\"name\":\"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2008.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2008.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robot Trajectory Planning for Multiple 3D Moving Objects Interception: A Polynomial Interpolation Approach
This paper presents a novel approach to on-line, robot-motion planning for multiple 3D moving-objects interception. Using a polynomial interpolation technique. The proposed approach utilizes the time parametric function of one or more moving objects to generate the multiple 3D interception trajectory. This methodology is efficient for the slow-maneuvering objects with constant acceleration in industrial settings, like objects moving on a circular conveyor. The multiple 3D interception trajectory allows the end-effector of a robotic arm to be oriented along the objects trajectory to avoid impact. The implementation of the proposed technique is illustrated via a simulation example. It consists of the multiple 3D interception of two objects moving along a well-known sinusoidal trajectory in the three-dimensional space.