具有正交特征的切比雪夫核

Xiaoyan Wei, Zhibin Pan
{"title":"具有正交特征的切比雪夫核","authors":"Xiaoyan Wei, Zhibin Pan","doi":"10.1109/CSIP.2012.6309010","DOIUrl":null,"url":null,"abstract":"Kernel methods play important roles in machine learning algorithms such as support vector machines. However, how to construct a suitable kernel remains difficult. Recently Ye et al proposed a new kind of kernel function named Chebyshev kernel based on orthogonal Chebyshev polynomials. But in fact the features of the nonlinear mapping determined by Chebyshev kernel are not orthogonal to each other due to the denominator in Chebyshev kernel. Thus we propose a new kernel named orthogonal Chebyshev kernel which determines a nonlinear mapping with orthogonal features. We prove that it is a valid kernel. Experimental results in both classification and regression tasks show that orthogonal Chebyshev kernel is effective and competitive to Chebyshev kernel.","PeriodicalId":193335,"journal":{"name":"2012 International Conference on Computer Science and Information Processing (CSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chebyshev kernel with orthogonal features\",\"authors\":\"Xiaoyan Wei, Zhibin Pan\",\"doi\":\"10.1109/CSIP.2012.6309010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kernel methods play important roles in machine learning algorithms such as support vector machines. However, how to construct a suitable kernel remains difficult. Recently Ye et al proposed a new kind of kernel function named Chebyshev kernel based on orthogonal Chebyshev polynomials. But in fact the features of the nonlinear mapping determined by Chebyshev kernel are not orthogonal to each other due to the denominator in Chebyshev kernel. Thus we propose a new kernel named orthogonal Chebyshev kernel which determines a nonlinear mapping with orthogonal features. We prove that it is a valid kernel. Experimental results in both classification and regression tasks show that orthogonal Chebyshev kernel is effective and competitive to Chebyshev kernel.\",\"PeriodicalId\":193335,\"journal\":{\"name\":\"2012 International Conference on Computer Science and Information Processing (CSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Computer Science and Information Processing (CSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSIP.2012.6309010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Computer Science and Information Processing (CSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIP.2012.6309010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

核方法在支持向量机等机器学习算法中起着重要的作用。然而,如何构建一个合适的内核仍然是一个难题。最近Ye等人提出了一种新的基于正交Chebyshev多项式的核函数Chebyshev核。但实际上,由于切比雪夫核中的分母,由切比雪夫核决定的非线性映射的特征并不相互正交。因此,我们提出了一种确定具有正交特征的非线性映射的新核——正交切比雪夫核。我们证明了它是一个有效的核。在分类和回归任务上的实验结果表明,正交切比雪夫核是有效的,并且与切比雪夫核相竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chebyshev kernel with orthogonal features
Kernel methods play important roles in machine learning algorithms such as support vector machines. However, how to construct a suitable kernel remains difficult. Recently Ye et al proposed a new kind of kernel function named Chebyshev kernel based on orthogonal Chebyshev polynomials. But in fact the features of the nonlinear mapping determined by Chebyshev kernel are not orthogonal to each other due to the denominator in Chebyshev kernel. Thus we propose a new kernel named orthogonal Chebyshev kernel which determines a nonlinear mapping with orthogonal features. We prove that it is a valid kernel. Experimental results in both classification and regression tasks show that orthogonal Chebyshev kernel is effective and competitive to Chebyshev kernel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network information impacting on rural education Scene detection in interference rejection combining algorithm Effects of oversample in tone reservation scheme for PAPR reduction in OFDM systems Efficient clustering index for semantic Web service based on user preference Research on fusion control of cement rotary kiln based on rough set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1