{"title":"Neozoa:用于研究竞争的沉浸式交互式沙盒","authors":"A. Knote, Sarah Edenhofer, S. Mammen","doi":"10.1109/KELVAR.2016.7563675","DOIUrl":null,"url":null,"abstract":"In this paper, we present an interactive simulation game with the objective to understand the mutual interferences of competitive (ant) species by experiencing their behaviour in a novel way. To reach that goal, the simulation makes use of current virtual reality devices (specifically the Oculus Rift DK2) to increase the level of immersion for the user. The focus of our research lies on the design and simulation of the foraging strategies of two antagonistic ant species, as well as the creation of an accessible experimentation environment. In particular, an invasive species based on the Argentine Ant (Lipethima Humile) is introduced into an ecosystem already populated by a native species modelled along the Black Garden Ant (Lasius Niger). The user can then use virtual tools inspired by real-life means to control the spreading of ants and help the native species to survive despite being inferior to the invasive ant. Options include manipulating pheromones used by the ants for navigation and, thereby, influencing the mechanism of mutual identification, or placing obstacles that block the ants' path. Also, many key parameters that control the ants can be modified during runtime. An integrated logging mechanism allows to collect data which can be processed by standard tools. The simulation also offers a dynamic, nature-inspired interactive example of the Ant Colony Optimization principle and can help to make natural processes more accessible.","PeriodicalId":170372,"journal":{"name":"2016 IEEE Virtual Reality Workshop on K-12 Embodied Learning through Virtual & Augmented Reality (KELVAR)","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neozoa: An immersive, interactive sandbox for the study of competing\",\"authors\":\"A. Knote, Sarah Edenhofer, S. Mammen\",\"doi\":\"10.1109/KELVAR.2016.7563675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an interactive simulation game with the objective to understand the mutual interferences of competitive (ant) species by experiencing their behaviour in a novel way. To reach that goal, the simulation makes use of current virtual reality devices (specifically the Oculus Rift DK2) to increase the level of immersion for the user. The focus of our research lies on the design and simulation of the foraging strategies of two antagonistic ant species, as well as the creation of an accessible experimentation environment. In particular, an invasive species based on the Argentine Ant (Lipethima Humile) is introduced into an ecosystem already populated by a native species modelled along the Black Garden Ant (Lasius Niger). The user can then use virtual tools inspired by real-life means to control the spreading of ants and help the native species to survive despite being inferior to the invasive ant. Options include manipulating pheromones used by the ants for navigation and, thereby, influencing the mechanism of mutual identification, or placing obstacles that block the ants' path. Also, many key parameters that control the ants can be modified during runtime. An integrated logging mechanism allows to collect data which can be processed by standard tools. The simulation also offers a dynamic, nature-inspired interactive example of the Ant Colony Optimization principle and can help to make natural processes more accessible.\",\"PeriodicalId\":170372,\"journal\":{\"name\":\"2016 IEEE Virtual Reality Workshop on K-12 Embodied Learning through Virtual & Augmented Reality (KELVAR)\",\"volume\":\"261 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Virtual Reality Workshop on K-12 Embodied Learning through Virtual & Augmented Reality (KELVAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KELVAR.2016.7563675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Virtual Reality Workshop on K-12 Embodied Learning through Virtual & Augmented Reality (KELVAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KELVAR.2016.7563675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neozoa: An immersive, interactive sandbox for the study of competing
In this paper, we present an interactive simulation game with the objective to understand the mutual interferences of competitive (ant) species by experiencing their behaviour in a novel way. To reach that goal, the simulation makes use of current virtual reality devices (specifically the Oculus Rift DK2) to increase the level of immersion for the user. The focus of our research lies on the design and simulation of the foraging strategies of two antagonistic ant species, as well as the creation of an accessible experimentation environment. In particular, an invasive species based on the Argentine Ant (Lipethima Humile) is introduced into an ecosystem already populated by a native species modelled along the Black Garden Ant (Lasius Niger). The user can then use virtual tools inspired by real-life means to control the spreading of ants and help the native species to survive despite being inferior to the invasive ant. Options include manipulating pheromones used by the ants for navigation and, thereby, influencing the mechanism of mutual identification, or placing obstacles that block the ants' path. Also, many key parameters that control the ants can be modified during runtime. An integrated logging mechanism allows to collect data which can be processed by standard tools. The simulation also offers a dynamic, nature-inspired interactive example of the Ant Colony Optimization principle and can help to make natural processes more accessible.