从能源和性能的角度评估重复数据删除的利弊

L. Costa, S. Al-Kiswany, R. Lopes, M. Ripeanu
{"title":"从能源和性能的角度评估重复数据删除的利弊","authors":"L. Costa, S. Al-Kiswany, R. Lopes, M. Ripeanu","doi":"10.1109/IGCC.2011.6008567","DOIUrl":null,"url":null,"abstract":"The energy costs of running computer systems are a growing concern: for large data centers, recent estimates put these costs higher than the cost of hardware itself. As a consequence, energy efficiency has become a pervasive theme for designing, deploying, and operating computer systems. This paper evaluates the energy trade-offs brought by data deduplication in distributed storage systems. Depending on the workload, deduplication can enable a lower storage footprint, reduce the I/O pressure on the storage system, and reduce network traffic, at the cost of increased computational overhead. From an energy perspective, data deduplication enables a trade-off between the energy consumed for additional computation and the energy saved by lower storage and network load. The main point our experiments and model bring home is the following: while for non energy-proportional machines performance- and energy-centric optimizations have break-even points that are relatively close, for the newer generation of energy proportional machines the break-even points are significantly different. An important consequence of this difference is that, with newer systems, there are higher energy inefficiencies when the system is optimized for performance.","PeriodicalId":306876,"journal":{"name":"2011 International Green Computing Conference and Workshops","volume":"4609 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Assessing data deduplication trade-offs from an energy and performance perspective\",\"authors\":\"L. Costa, S. Al-Kiswany, R. Lopes, M. Ripeanu\",\"doi\":\"10.1109/IGCC.2011.6008567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy costs of running computer systems are a growing concern: for large data centers, recent estimates put these costs higher than the cost of hardware itself. As a consequence, energy efficiency has become a pervasive theme for designing, deploying, and operating computer systems. This paper evaluates the energy trade-offs brought by data deduplication in distributed storage systems. Depending on the workload, deduplication can enable a lower storage footprint, reduce the I/O pressure on the storage system, and reduce network traffic, at the cost of increased computational overhead. From an energy perspective, data deduplication enables a trade-off between the energy consumed for additional computation and the energy saved by lower storage and network load. The main point our experiments and model bring home is the following: while for non energy-proportional machines performance- and energy-centric optimizations have break-even points that are relatively close, for the newer generation of energy proportional machines the break-even points are significantly different. An important consequence of this difference is that, with newer systems, there are higher energy inefficiencies when the system is optimized for performance.\",\"PeriodicalId\":306876,\"journal\":{\"name\":\"2011 International Green Computing Conference and Workshops\",\"volume\":\"4609 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Green Computing Conference and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2011.6008567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Green Computing Conference and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2011.6008567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

运行计算机系统的能源成本越来越令人担忧:对于大型数据中心来说,最近的估计表明这些成本高于硬件本身的成本。因此,能源效率已成为设计、部署和操作计算机系统的普遍主题。本文对分布式存储系统中重复数据删除带来的能量权衡进行了评估。根据工作负载的不同,重复数据删除可以降低存储占用,减少存储系统的I/O压力,减少网络流量,但代价是增加计算开销。从能源的角度来看,重复数据删除可以在额外计算所消耗的能量与较低的存储和网络负载所节省的能量之间进行权衡。我们的实验和模型带来的主要观点如下:对于非能量比例机器,性能和以能量为中心的优化具有相对接近的盈亏平衡点,对于新一代的能量比例机器,盈亏平衡点显着不同。这种差异的一个重要后果是,对于较新的系统,当系统进行性能优化时,存在更高的能源低效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing data deduplication trade-offs from an energy and performance perspective
The energy costs of running computer systems are a growing concern: for large data centers, recent estimates put these costs higher than the cost of hardware itself. As a consequence, energy efficiency has become a pervasive theme for designing, deploying, and operating computer systems. This paper evaluates the energy trade-offs brought by data deduplication in distributed storage systems. Depending on the workload, deduplication can enable a lower storage footprint, reduce the I/O pressure on the storage system, and reduce network traffic, at the cost of increased computational overhead. From an energy perspective, data deduplication enables a trade-off between the energy consumed for additional computation and the energy saved by lower storage and network load. The main point our experiments and model bring home is the following: while for non energy-proportional machines performance- and energy-centric optimizations have break-even points that are relatively close, for the newer generation of energy proportional machines the break-even points are significantly different. An important consequence of this difference is that, with newer systems, there are higher energy inefficiencies when the system is optimized for performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VLSI testing and test power Leakage-aware Kalman filter for accurate temperature tracking Practical performance prediction under Dynamic Voltage Frequency Scaling CACM: Current-aware capacity management in consolidated server enclosures Gureen Game: An energy-efficient QoS control scheme for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1