基于自然驾驶数据集的合成驾驶循环验证过程

A. Esser, S. Rinderknecht
{"title":"基于自然驾驶数据集的合成驾驶循环验证过程","authors":"A. Esser, S. Rinderknecht","doi":"10.1109/ITSC45102.2020.9294369","DOIUrl":null,"url":null,"abstract":"Synthetic Driving Cycles have been used in numerous studies to describe a certain driving profile of relevance. An important purpose of synthetic cycles is to limit the necessary time on a test-rig or to reduce the computational effort within simulations, which is achieved by compressing a larger amount of gathered operating data from a certain vehicle or a vehicle fleet to a necessary minimum. Interestingly, despite the intensive use of the synthetic driving cycles, there is only limited literature on the validation of using synthetic driving cycles. Therefore, the scope of this work is to further investigate under which conditions synthetic driving cycles can be used to replace the entirety of the relevant operating data in the evaluation of a vehicle’s consumption. We apply a longitudinal vehicle simulation model to calculate the fuel and electric consumption of vehicles with different powertrain concepts on many generated synthetic driving cycles for different compression rates. We then compare that to the consumption if considering the original driving data. A legislative driving cycle (WLTC) as well as naturalistic driving data sets are used for the evaluation. The results show, that synthetic driving cycles allow for a compact representation of the original data sets but possible compression rates depend on the specific driving data. The presented two-step process can be extended to a generalized validation process for the use of synthetic driving cycles.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Process for the Validation of Using Synthetic Driving Cycles Based on Naturalistic Driving Data Sets\",\"authors\":\"A. Esser, S. Rinderknecht\",\"doi\":\"10.1109/ITSC45102.2020.9294369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic Driving Cycles have been used in numerous studies to describe a certain driving profile of relevance. An important purpose of synthetic cycles is to limit the necessary time on a test-rig or to reduce the computational effort within simulations, which is achieved by compressing a larger amount of gathered operating data from a certain vehicle or a vehicle fleet to a necessary minimum. Interestingly, despite the intensive use of the synthetic driving cycles, there is only limited literature on the validation of using synthetic driving cycles. Therefore, the scope of this work is to further investigate under which conditions synthetic driving cycles can be used to replace the entirety of the relevant operating data in the evaluation of a vehicle’s consumption. We apply a longitudinal vehicle simulation model to calculate the fuel and electric consumption of vehicles with different powertrain concepts on many generated synthetic driving cycles for different compression rates. We then compare that to the consumption if considering the original driving data. A legislative driving cycle (WLTC) as well as naturalistic driving data sets are used for the evaluation. The results show, that synthetic driving cycles allow for a compact representation of the original data sets but possible compression rates depend on the specific driving data. The presented two-step process can be extended to a generalized validation process for the use of synthetic driving cycles.\",\"PeriodicalId\":394538,\"journal\":{\"name\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC45102.2020.9294369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在许多研究中,合成驾驶循环被用来描述某种相关的驾驶剖面。合成循环的一个重要目的是限制在试验台上的必要时间或减少模拟中的计算工作量,这是通过将从特定车辆或车队收集的大量操作数据压缩到必要的最小值来实现的。有趣的是,尽管大量使用合成驾驶循环,但只有有限的文献验证使用合成驾驶循环。因此,这项工作的范围是进一步研究在哪些条件下可以使用合成驾驶循环来取代评估车辆消耗的全部相关操作数据。采用纵向车辆仿真模型,计算了不同动力总成概念的车辆在不同压缩率下的多个合成行驶工况下的燃油和电力消耗。然后,我们将其与考虑原始驾驶数据的消耗进行比较。使用立法驾驶周期(WLTC)和自然驾驶数据集进行评估。结果表明,合成驾驶循环允许原始数据集的紧凑表示,但可能的压缩率取决于特定的驾驶数据。所提出的两步过程可以扩展到使用合成驱动循环的广义验证过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Process for the Validation of Using Synthetic Driving Cycles Based on Naturalistic Driving Data Sets
Synthetic Driving Cycles have been used in numerous studies to describe a certain driving profile of relevance. An important purpose of synthetic cycles is to limit the necessary time on a test-rig or to reduce the computational effort within simulations, which is achieved by compressing a larger amount of gathered operating data from a certain vehicle or a vehicle fleet to a necessary minimum. Interestingly, despite the intensive use of the synthetic driving cycles, there is only limited literature on the validation of using synthetic driving cycles. Therefore, the scope of this work is to further investigate under which conditions synthetic driving cycles can be used to replace the entirety of the relevant operating data in the evaluation of a vehicle’s consumption. We apply a longitudinal vehicle simulation model to calculate the fuel and electric consumption of vehicles with different powertrain concepts on many generated synthetic driving cycles for different compression rates. We then compare that to the consumption if considering the original driving data. A legislative driving cycle (WLTC) as well as naturalistic driving data sets are used for the evaluation. The results show, that synthetic driving cycles allow for a compact representation of the original data sets but possible compression rates depend on the specific driving data. The presented two-step process can be extended to a generalized validation process for the use of synthetic driving cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CR-TMS: Connected Vehicles enabled Road Traffic Congestion Mitigation System using Virtual Road Capacity Inflation A novel concept for validation of pre-crash perception sensor information using contact sensor Space-time Map based Path Planning Scheme in Large-scale Intelligent Warehouse System Weakly-supervised Road Condition Classification Using Automatically Generated Labels Studying the Impact of Public Transport on Disaster Evacuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1