基于线性参数变模型的未知输入观测器故障估计设计。应用于风力涡轮机系统

Shanzhi Li, Haoping Wang, A. Aitouche, N. Christov
{"title":"基于线性参数变模型的未知输入观测器故障估计设计。应用于风力涡轮机系统","authors":"Shanzhi Li, Haoping Wang, A. Aitouche, N. Christov","doi":"10.1109/ICOSC.2018.8587778","DOIUrl":null,"url":null,"abstract":"This paper proposes a sensor and actuator estimation algorithm based on linear parameter varying (LPV) model. Considering sensor noise and disturbance, an unknown input observer (UIO) is developed. In this scheme, by building an augmented system with a filter, sensor fault and noise of the original system become into a part of actuator fault and disturbance. According to this augmented system, an UIO and fault estimation method have been designed. Then, by solving the linear matrix equalities (LMEs) and the linear matrix inequalities (LMIs), the parameters of the UIO are obtained. In addition, we analyze the convergence of the observer. In order to verify the proposed method, a wind turbine system with torque actuator fault and pitch angle sensor fault has been tested. From simulation results, it presents an efficient performance on both state and fault estimation.","PeriodicalId":153985,"journal":{"name":"2018 7th International Conference on Systems and Control (ICSC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unknown input observer design for faults estimation using linear parameter varying model. Application to wind turbine systems\",\"authors\":\"Shanzhi Li, Haoping Wang, A. Aitouche, N. Christov\",\"doi\":\"10.1109/ICOSC.2018.8587778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a sensor and actuator estimation algorithm based on linear parameter varying (LPV) model. Considering sensor noise and disturbance, an unknown input observer (UIO) is developed. In this scheme, by building an augmented system with a filter, sensor fault and noise of the original system become into a part of actuator fault and disturbance. According to this augmented system, an UIO and fault estimation method have been designed. Then, by solving the linear matrix equalities (LMEs) and the linear matrix inequalities (LMIs), the parameters of the UIO are obtained. In addition, we analyze the convergence of the observer. In order to verify the proposed method, a wind turbine system with torque actuator fault and pitch angle sensor fault has been tested. From simulation results, it presents an efficient performance on both state and fault estimation.\",\"PeriodicalId\":153985,\"journal\":{\"name\":\"2018 7th International Conference on Systems and Control (ICSC)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th International Conference on Systems and Control (ICSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2018.8587778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2018.8587778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于线性参数变化(LPV)模型的传感器和执行器估计算法。考虑传感器噪声和干扰,设计了一种未知输入观测器。在该方案中,通过建立一个带滤波器的增强系统,将原系统的传感器故障和噪声变为执行器故障和干扰的一部分。在此基础上,设计了UIO和故障估计方法。然后,通过求解线性矩阵等式(LMEs)和线性矩阵不等式(lmi),得到了UIO的参数。此外,我们还分析了观测器的收敛性。为了验证所提方法的有效性,对一个存在转矩执行器故障和俯仰角传感器故障的风力发电机组系统进行了测试。仿真结果表明,该方法具有良好的状态估计和故障估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unknown input observer design for faults estimation using linear parameter varying model. Application to wind turbine systems
This paper proposes a sensor and actuator estimation algorithm based on linear parameter varying (LPV) model. Considering sensor noise and disturbance, an unknown input observer (UIO) is developed. In this scheme, by building an augmented system with a filter, sensor fault and noise of the original system become into a part of actuator fault and disturbance. According to this augmented system, an UIO and fault estimation method have been designed. Then, by solving the linear matrix equalities (LMEs) and the linear matrix inequalities (LMIs), the parameters of the UIO are obtained. In addition, we analyze the convergence of the observer. In order to verify the proposed method, a wind turbine system with torque actuator fault and pitch angle sensor fault has been tested. From simulation results, it presents an efficient performance on both state and fault estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct Power Control of DFIG by Sliding Mode Control and Space Vector Modulation Regional Pole Assignment for Constrained Input Uncertain Systems Fault Tolerant Adaptive Control using Time Delay Control Scheme under Motor Faults of Octocopter Control of energy transfer between a storage battery and the electricity grid An advanced energy management system with an economical optimization for a multi-sources stand-alone Home
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1