城市物联网中无人机的鲁棒多路径通信

Zoheb Shaikh, S. Baidya, M. Levorato
{"title":"城市物联网中无人机的鲁棒多路径通信","authors":"Zoheb Shaikh, S. Baidya, M. Levorato","doi":"10.1109/SECONW.2018.8396356","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicle (UAV) systems are being increasingly used in a broad range of scenarios and applications. However, their deployment in urban areas poses important technical challenges. One of the most prominent concerns is the robustness of communications between the ground stations and the UAVs in a highly dynamic and crowded spectrum. Indeed, competing data streams may create local or temporary congestion impairing the ground stations to control the UAVs. The main contribution of this paper is a robust multi-path communication framework for UAV systems. The framework continuously probes the performance of multiple wireless multi-hop paths from the ground stations to each UAV, and dynamically selects the path providing the best performance to support timely control. Numerical results, based on a real-world implementation and extensive field experimentation, demonstrate the ability of the proposed framework to provide robust control against exogenous interference and network congestion.","PeriodicalId":346249,"journal":{"name":"2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Robust Multi-Path Communications for UAVs in the Urban IoT\",\"authors\":\"Zoheb Shaikh, S. Baidya, M. Levorato\",\"doi\":\"10.1109/SECONW.2018.8396356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned Aerial Vehicle (UAV) systems are being increasingly used in a broad range of scenarios and applications. However, their deployment in urban areas poses important technical challenges. One of the most prominent concerns is the robustness of communications between the ground stations and the UAVs in a highly dynamic and crowded spectrum. Indeed, competing data streams may create local or temporary congestion impairing the ground stations to control the UAVs. The main contribution of this paper is a robust multi-path communication framework for UAV systems. The framework continuously probes the performance of multiple wireless multi-hop paths from the ground stations to each UAV, and dynamically selects the path providing the best performance to support timely control. Numerical results, based on a real-world implementation and extensive field experimentation, demonstrate the ability of the proposed framework to provide robust control against exogenous interference and network congestion.\",\"PeriodicalId\":346249,\"journal\":{\"name\":\"2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECONW.2018.8396356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECONW.2018.8396356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

无人驾驶飞行器(UAV)系统正日益广泛地应用于各种场景和应用中。然而,在城市地区部署它们构成了重大的技术挑战。其中一个最突出的问题是在高度动态和拥挤的频谱中地面站和无人机之间的通信鲁棒性。实际上,相互竞争的数据流可能造成局部或暂时的拥塞,从而削弱地面站控制无人机的能力。本文的主要贡献是为无人机系统提供了一个鲁棒的多路径通信框架。该框架对从地面站到每架无人机的多个无线多跳路径的性能进行连续探测,并动态选择性能最佳的路径支持及时控制。基于现实世界的实现和广泛的现场实验的数值结果表明,所提出的框架能够提供对外生干扰和网络拥塞的鲁棒控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Multi-Path Communications for UAVs in the Urban IoT
Unmanned Aerial Vehicle (UAV) systems are being increasingly used in a broad range of scenarios and applications. However, their deployment in urban areas poses important technical challenges. One of the most prominent concerns is the robustness of communications between the ground stations and the UAVs in a highly dynamic and crowded spectrum. Indeed, competing data streams may create local or temporary congestion impairing the ground stations to control the UAVs. The main contribution of this paper is a robust multi-path communication framework for UAV systems. The framework continuously probes the performance of multiple wireless multi-hop paths from the ground stations to each UAV, and dynamically selects the path providing the best performance to support timely control. Numerical results, based on a real-world implementation and extensive field experimentation, demonstrate the ability of the proposed framework to provide robust control against exogenous interference and network congestion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CoWPER Patrons Multi-Gateway Polling for Nanonetworks under Dynamic IoT Backhaul Bandwidth High-Efficiency Target Detection Scheme through Relay Nodes in Chemotactic-Based Molecular Communication Communication-Inspired Model of Epidemics An Effective Distance Measurement Method for Molecular Communication Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1