{"title":"Attack Characterization and Intrusion Detection using an Ensemble of Self-Organizing Maps","authors":"L. DeLooze","doi":"10.1109/IAW.2006.1652084","DOIUrl":null,"url":null,"abstract":"Self-organized maps (SOM) use an unsupervised learning technique to independently organize a set of input patterns into various classes. In this paper, we use an ensemble of SOMs to identify computer attacks and characterize them appropriately using the major classes of computer attacks (denial of service, probe, user-to-root and remote-to-local). The procedure produces a set of confidence levels for each connection as a way to describe the connection's behavior","PeriodicalId":326306,"journal":{"name":"2006 IEEE Information Assurance Workshop","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Assurance Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAW.2006.1652084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

自组织映射(SOM)使用无监督学习技术将一组输入模式独立地组织到不同的类中。在本文中,我们使用SOMs集合来识别计算机攻击,并使用主要的计算机攻击类别(拒绝服务,探测,用户到根和远程到本地)适当地描述它们。该过程为每个连接生成一组置信水平,作为描述连接行为的一种方式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attack Characterization and Intrusion Detection using an Ensemble of Self-Organizing Maps
Self-organized maps (SOM) use an unsupervised learning technique to independently organize a set of input patterns into various classes. In this paper, we use an ensemble of SOMs to identify computer attacks and characterize them appropriately using the major classes of computer attacks (denial of service, probe, user-to-root and remote-to-local). The procedure produces a set of confidence levels for each connection as a way to describe the connection's behavior
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a Threat Model for Enterprise Storage Area Networks Automatically Building an Information-Security Vulnerability Database Analyzing Attack Trees using Generalized Stochastic Petri Nets Secure State Processing Visual Reverse Turing Tests: A False Sense of Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1