下林煤矿+30层地表稳定性双斜井开挖行为

Doan Viet Dao
{"title":"下林煤矿+30层地表稳定性双斜井开挖行为","authors":"Doan Viet Dao","doi":"10.46326/jmes.2022.63(3a).10","DOIUrl":null,"url":null,"abstract":"The process of excavating roadway, shafts, and exploiting coal seams located near the ground may cause subsidence of the ground surface, cracking, damage to structures on the surface. Therefore, it is necessary to rely on the specific conditions of the site to calculate and forecast the level of impact on the works on the surface, ground subsidence when excavated roadway, shafts, exploiting coal seams located near the ground. Based on the topographical conditions, geological hydrogeological conditions and current status of works on the surface, the technical design of the excavation of the twin inclined shafts from +30÷-300 levels in the Ha Lam coal mine is proposed. This paper uses the numerical method by FLAC3D software to build the model with a height of 450 m and a width of 700 m to study the effect of the twin inclined shafts construction on the deformation of rock mass on the ground surface. This research has shown that after the construction of the twin inclined shafts from +30÷-300 levels, the area of ​​each inclined shaft is 15.8 m2, rock mass on the ground surface is deformed, the maximum value of vertical deformation is about 5 cm, horizontally deformation is about 3 cm, the effect range of deformation the surface is within a radius of 25 m. So on the +30 level of Ha Lam coal mines when constructing works serving the coal mining within a radius of 25 m in the twin inclined shafts entrance area, it is necessary to consider the impact excavation of the twin inclined shafts. But when constructing works outside a radius of 25 m in the twin inclined shafts entrance area will not be affected. Recommendations for the Ha Lam coal mine process need to install more deformation monitoring stations to monitor the deformation process of the surface of +30 level when excavation of the twin inclined shafts.","PeriodicalId":170167,"journal":{"name":"Journal of Mining and Earth Sciences","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Behavior of twin inclined shafts excavated for +30 levels surface stability in Ha Lam coal mine\",\"authors\":\"Doan Viet Dao\",\"doi\":\"10.46326/jmes.2022.63(3a).10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of excavating roadway, shafts, and exploiting coal seams located near the ground may cause subsidence of the ground surface, cracking, damage to structures on the surface. Therefore, it is necessary to rely on the specific conditions of the site to calculate and forecast the level of impact on the works on the surface, ground subsidence when excavated roadway, shafts, exploiting coal seams located near the ground. Based on the topographical conditions, geological hydrogeological conditions and current status of works on the surface, the technical design of the excavation of the twin inclined shafts from +30÷-300 levels in the Ha Lam coal mine is proposed. This paper uses the numerical method by FLAC3D software to build the model with a height of 450 m and a width of 700 m to study the effect of the twin inclined shafts construction on the deformation of rock mass on the ground surface. This research has shown that after the construction of the twin inclined shafts from +30÷-300 levels, the area of ​​each inclined shaft is 15.8 m2, rock mass on the ground surface is deformed, the maximum value of vertical deformation is about 5 cm, horizontally deformation is about 3 cm, the effect range of deformation the surface is within a radius of 25 m. So on the +30 level of Ha Lam coal mines when constructing works serving the coal mining within a radius of 25 m in the twin inclined shafts entrance area, it is necessary to consider the impact excavation of the twin inclined shafts. But when constructing works outside a radius of 25 m in the twin inclined shafts entrance area will not be affected. Recommendations for the Ha Lam coal mine process need to install more deformation monitoring stations to monitor the deformation process of the surface of +30 level when excavation of the twin inclined shafts.\",\"PeriodicalId\":170167,\"journal\":{\"name\":\"Journal of Mining and Earth Sciences\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46326/jmes.2022.63(3a).10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46326/jmes.2022.63(3a).10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

巷道、竖井的开挖和近地煤层的开采过程中,可能会引起地表沉陷、开裂和地面结构的破坏。因此,有必要根据现场的具体情况,计算和预测开挖巷道、竖井、开采近地煤层时对地面工程的影响程度、地面沉降情况。根据下林煤矿地形条件、地质水文地质条件和地表工程现状,提出了下林煤矿+30÷-300水平双斜井开挖的技术设计方案。本文采用数值方法,利用FLAC3D软件建立高450 m、宽700 m的模型,研究双斜井施工对地表岩体变形的影响。本研究表明,从+30÷-300水平双斜井施工后,每个斜井面积为15.8 m2,地表岩体发生变形,垂直变形最大值约为5 cm,水平变形约为3 cm,地表变形影响范围在25 m半径内。因此,在下林煤矿+30层双斜井入口半径25m范围内建设服务采煤工程时,必须考虑双斜井冲击开挖。但在双斜井半径25m以外施工时,入口区域不受影响。建议下林煤矿工艺需要加设变形监测站,监测双斜井开挖时+30水平面的变形过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Behavior of twin inclined shafts excavated for +30 levels surface stability in Ha Lam coal mine
The process of excavating roadway, shafts, and exploiting coal seams located near the ground may cause subsidence of the ground surface, cracking, damage to structures on the surface. Therefore, it is necessary to rely on the specific conditions of the site to calculate and forecast the level of impact on the works on the surface, ground subsidence when excavated roadway, shafts, exploiting coal seams located near the ground. Based on the topographical conditions, geological hydrogeological conditions and current status of works on the surface, the technical design of the excavation of the twin inclined shafts from +30÷-300 levels in the Ha Lam coal mine is proposed. This paper uses the numerical method by FLAC3D software to build the model with a height of 450 m and a width of 700 m to study the effect of the twin inclined shafts construction on the deformation of rock mass on the ground surface. This research has shown that after the construction of the twin inclined shafts from +30÷-300 levels, the area of ​​each inclined shaft is 15.8 m2, rock mass on the ground surface is deformed, the maximum value of vertical deformation is about 5 cm, horizontally deformation is about 3 cm, the effect range of deformation the surface is within a radius of 25 m. So on the +30 level of Ha Lam coal mines when constructing works serving the coal mining within a radius of 25 m in the twin inclined shafts entrance area, it is necessary to consider the impact excavation of the twin inclined shafts. But when constructing works outside a radius of 25 m in the twin inclined shafts entrance area will not be affected. Recommendations for the Ha Lam coal mine process need to install more deformation monitoring stations to monitor the deformation process of the surface of +30 level when excavation of the twin inclined shafts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ESP Application for Oil Production in Naturally Fractured Granitic Basement Reservoir Comparison analytical hierarchy process (AHP) and frequency ratio (FR) method in assessment of landslide susceptibility. A case study in Van Yen district, Yen Bai province Deep geological structure of An Chau trough base on new study data Assessment of liquefaction potential of sand distributed in the 1 District, Ho Chi Minh city Geotechnical zoning in Hai Duong province for construction planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1