Ji-Ho Cho, Satoshi Ikehata, H. Yoo, M. Gelautz, K. Aizawa
{"title":"使用成本-体积滤波的深度图上采样","authors":"Ji-Ho Cho, Satoshi Ikehata, H. Yoo, M. Gelautz, K. Aizawa","doi":"10.1109/IVMSPW.2013.6611912","DOIUrl":null,"url":null,"abstract":"Depth maps captured by active sensors (e.g., ToF cameras and Kinect) typically suffer from poor spatial resolution, considerable amount of noise, and missing data. To overcome these problems, we propose a novel depth map up-sampling method which increases the resolution of the original depth map while effectively suppressing aliasing artifacts. Assuming that a registered high-resolution texture image is available, the cost-volume filtering framework is applied to this problem. Our experiments show that cost-volume filtering can generate the high-resolution depth map accurately and efficiently while preserving discontinuous object boundaries, which is often a challenge when various state-of-the-art algorithms are applied.","PeriodicalId":170714,"journal":{"name":"IVMSP 2013","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Depth map up-sampling using cost-volume filtering\",\"authors\":\"Ji-Ho Cho, Satoshi Ikehata, H. Yoo, M. Gelautz, K. Aizawa\",\"doi\":\"10.1109/IVMSPW.2013.6611912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth maps captured by active sensors (e.g., ToF cameras and Kinect) typically suffer from poor spatial resolution, considerable amount of noise, and missing data. To overcome these problems, we propose a novel depth map up-sampling method which increases the resolution of the original depth map while effectively suppressing aliasing artifacts. Assuming that a registered high-resolution texture image is available, the cost-volume filtering framework is applied to this problem. Our experiments show that cost-volume filtering can generate the high-resolution depth map accurately and efficiently while preserving discontinuous object boundaries, which is often a challenge when various state-of-the-art algorithms are applied.\",\"PeriodicalId\":170714,\"journal\":{\"name\":\"IVMSP 2013\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IVMSP 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVMSPW.2013.6611912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVMSP 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2013.6611912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Depth maps captured by active sensors (e.g., ToF cameras and Kinect) typically suffer from poor spatial resolution, considerable amount of noise, and missing data. To overcome these problems, we propose a novel depth map up-sampling method which increases the resolution of the original depth map while effectively suppressing aliasing artifacts. Assuming that a registered high-resolution texture image is available, the cost-volume filtering framework is applied to this problem. Our experiments show that cost-volume filtering can generate the high-resolution depth map accurately and efficiently while preserving discontinuous object boundaries, which is often a challenge when various state-of-the-art algorithms are applied.