利用神经网络生成FIR滤波器以改善数字图像

J. Pęksiński, G. Mikolajczak
{"title":"利用神经网络生成FIR滤波器以改善数字图像","authors":"J. Pęksiński, G. Mikolajczak","doi":"10.1109/TSP.2011.6043674","DOIUrl":null,"url":null,"abstract":"The aim of the article is to show correction possibilities of digital images, achieved by image acquisition tools built on low class CCD matrices, such as their quality were close to images achieved by high class tools. For this purpose the authors used the linear filter with 3×3 mask, which were generated with neural network.","PeriodicalId":341695,"journal":{"name":"2011 34th International Conference on Telecommunications and Signal Processing (TSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Generation of FIR filters by using neural networks to improve digital images\",\"authors\":\"J. Pęksiński, G. Mikolajczak\",\"doi\":\"10.1109/TSP.2011.6043674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the article is to show correction possibilities of digital images, achieved by image acquisition tools built on low class CCD matrices, such as their quality were close to images achieved by high class tools. For this purpose the authors used the linear filter with 3×3 mask, which were generated with neural network.\",\"PeriodicalId\":341695,\"journal\":{\"name\":\"2011 34th International Conference on Telecommunications and Signal Processing (TSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 34th International Conference on Telecommunications and Signal Processing (TSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSP.2011.6043674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 34th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2011.6043674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文的目的是展示数字图像的校正可能性,通过建立在低级别CCD矩阵上的图像采集工具实现,例如它们的质量接近高级别工具实现的图像。为此,作者使用了神经网络生成的带3×3掩模的线性滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of FIR filters by using neural networks to improve digital images
The aim of the article is to show correction possibilities of digital images, achieved by image acquisition tools built on low class CCD matrices, such as their quality were close to images achieved by high class tools. For this purpose the authors used the linear filter with 3×3 mask, which were generated with neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind face indexing in video Optimal position of external node for very-high-bitrate digital subscriber line Performance evaluation of Castalia Wireless Sensor Network simulator Performance of gait authentication using an acceleration sensor Additional approach to the conception of current follower and amplifier with controllable features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1