{"title":"基于析取不等式的保护继电器协调的混合整数线性规划新公式","authors":"S. T. P. Srinivas, K. Shanti Swarup","doi":"10.1109/JPETS.2019.2907320","DOIUrl":null,"url":null,"abstract":"Numerical optimization-based solution to directional overcurrent relay (DOCR) coordination problem has been a widely addressed research problem in the recent past. Many linear (LP), nonlinear (NLP), mixed integer nonlinear (MINLP), mixed integer linear (MILP), and quadratically constrained quadratic programming (QCQP)-based formulations have been presented in the past literature. This paper proposes a new MILP-based formulation using disjunctive inequalities. The nonlinear DOCR protection coordination model is formulated as MILP by linearizing the bilinear terms existing in the original formulation. One of the variables in each bilinear term is discretized over its interval into a fixed number of steps. After assigning binary variables to each discrete interval, the resulting bilinear terms with binary variables are written in terms of disjunctive inequalities. The results have shown that the proposed MILP formulation fetch better optimal solutions compared with past MILP and MINLP formulations. The MILP problem is programmed in GAMS package with CPLEX solver and tested on standard 3 bus, 9 bus, 15 bus, and 30 bus systems and results are found to be satisfactory.","PeriodicalId":170601,"journal":{"name":"IEEE Power and Energy Technology Systems Journal","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A New Mixed Integer Linear Programming Formulation for Protection Relay Coordination Using Disjunctive Inequalities\",\"authors\":\"S. T. P. Srinivas, K. Shanti Swarup\",\"doi\":\"10.1109/JPETS.2019.2907320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical optimization-based solution to directional overcurrent relay (DOCR) coordination problem has been a widely addressed research problem in the recent past. Many linear (LP), nonlinear (NLP), mixed integer nonlinear (MINLP), mixed integer linear (MILP), and quadratically constrained quadratic programming (QCQP)-based formulations have been presented in the past literature. This paper proposes a new MILP-based formulation using disjunctive inequalities. The nonlinear DOCR protection coordination model is formulated as MILP by linearizing the bilinear terms existing in the original formulation. One of the variables in each bilinear term is discretized over its interval into a fixed number of steps. After assigning binary variables to each discrete interval, the resulting bilinear terms with binary variables are written in terms of disjunctive inequalities. The results have shown that the proposed MILP formulation fetch better optimal solutions compared with past MILP and MINLP formulations. The MILP problem is programmed in GAMS package with CPLEX solver and tested on standard 3 bus, 9 bus, 15 bus, and 30 bus systems and results are found to be satisfactory.\",\"PeriodicalId\":170601,\"journal\":{\"name\":\"IEEE Power and Energy Technology Systems Journal\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Power and Energy Technology Systems Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JPETS.2019.2907320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power and Energy Technology Systems Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JPETS.2019.2907320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Mixed Integer Linear Programming Formulation for Protection Relay Coordination Using Disjunctive Inequalities
Numerical optimization-based solution to directional overcurrent relay (DOCR) coordination problem has been a widely addressed research problem in the recent past. Many linear (LP), nonlinear (NLP), mixed integer nonlinear (MINLP), mixed integer linear (MILP), and quadratically constrained quadratic programming (QCQP)-based formulations have been presented in the past literature. This paper proposes a new MILP-based formulation using disjunctive inequalities. The nonlinear DOCR protection coordination model is formulated as MILP by linearizing the bilinear terms existing in the original formulation. One of the variables in each bilinear term is discretized over its interval into a fixed number of steps. After assigning binary variables to each discrete interval, the resulting bilinear terms with binary variables are written in terms of disjunctive inequalities. The results have shown that the proposed MILP formulation fetch better optimal solutions compared with past MILP and MINLP formulations. The MILP problem is programmed in GAMS package with CPLEX solver and tested on standard 3 bus, 9 bus, 15 bus, and 30 bus systems and results are found to be satisfactory.