中国东部对流层NO2和HCHO的地面和卫星高光谱测量

K. Chan, Zhuoru Wang, K. Heue
{"title":"中国东部对流层NO2和HCHO的地面和卫星高光谱测量","authors":"K. Chan, Zhuoru Wang, K. Heue","doi":"10.1364/HISE.2019.HTH1B.3","DOIUrl":null,"url":null,"abstract":"We present long term observations of atmospheric nitrogen dioxide (NO2) and formaldehyde (HCHO) in Nanjing using a Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument. Ground based MAX-DOAS measurements were performed from April 2013 to February 2017. The MAX-DOAS measurements of NO2 and HCHO vertical column densities (VCDs) are used to validate OMI satellite observations over Nanjing. We developed a new technique to assemble the source contribution map using backward trajectory analysis. The age weighted backward propagation approach is applied to the MAX-DOAS measurements of NO2 and HCHO to reconstruct the spatial distribution of NO2 and HCHO over the Yangtze River Delta during summer and winter time. The reconstructed NO2 fields show a distinct agreement with OMI satellite observations. However, due to the short atmospheric lifetime of HCHO, the backward propagated HCHO data does not show a strong spatial correlation with the OMI HCHO observations. The result shows the MAX-DOAS measurements are sensitive to the air pollution transportation in the Yangtze River Delta, indicating the air quality in Nanjing is significantly influenced by regional transportation of air pollutants. Our results provide a better understanding of the transportation and sources of pollutants in over the Yangtze River Delta as well as the effect of emission control measures during large international event, which are important for the future design of air pollution control policies.","PeriodicalId":174423,"journal":{"name":"Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hyperspectral ground based and satellite measurements of tropospheric NO2 and HCHO over Eastern China\",\"authors\":\"K. Chan, Zhuoru Wang, K. Heue\",\"doi\":\"10.1364/HISE.2019.HTH1B.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present long term observations of atmospheric nitrogen dioxide (NO2) and formaldehyde (HCHO) in Nanjing using a Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument. Ground based MAX-DOAS measurements were performed from April 2013 to February 2017. The MAX-DOAS measurements of NO2 and HCHO vertical column densities (VCDs) are used to validate OMI satellite observations over Nanjing. We developed a new technique to assemble the source contribution map using backward trajectory analysis. The age weighted backward propagation approach is applied to the MAX-DOAS measurements of NO2 and HCHO to reconstruct the spatial distribution of NO2 and HCHO over the Yangtze River Delta during summer and winter time. The reconstructed NO2 fields show a distinct agreement with OMI satellite observations. However, due to the short atmospheric lifetime of HCHO, the backward propagated HCHO data does not show a strong spatial correlation with the OMI HCHO observations. The result shows the MAX-DOAS measurements are sensitive to the air pollution transportation in the Yangtze River Delta, indicating the air quality in Nanjing is significantly influenced by regional transportation of air pollutants. Our results provide a better understanding of the transportation and sources of pollutants in over the Yangtze River Delta as well as the effect of emission control measures during large international event, which are important for the future design of air pollution control policies.\",\"PeriodicalId\":174423,\"journal\":{\"name\":\"Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/HISE.2019.HTH1B.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/HISE.2019.HTH1B.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用多轴差分光学吸收光谱法(MAX-DOAS)对南京地区大气中二氧化氮(NO2)和甲醛(HCHO)进行了长期观测。地面MAX-DOAS测量于2013年4月至2017年2月进行。利用MAX-DOAS测量的NO2和HCHO垂直柱密度(vcd)对OMI卫星在南京上空的观测结果进行了验证。我们开发了一种利用反向轨迹分析来组装源贡献图的新技术。将年龄加权反向传播方法应用于NO2和HCHO的MAX-DOAS观测,重建了长三角地区夏季和冬季NO2和HCHO的空间分布。重建的NO2场与OMI卫星观测结果有明显的一致性。然而,由于HCHO的大气寿命较短,反向传播的HCHO数据与OMI的HCHO观测结果没有很强的空间相关性。结果表明,MAX-DOAS测量结果对长三角地区大气污染运移较为敏感,表明南京空气质量受大气污染物区域迁移影响显著。研究结果有助于我们更好地了解长三角地区大气污染物的运移和来源,以及大型国际活动期间大气污染物排放控制措施的效果,对未来大气污染控制政策的设计具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperspectral ground based and satellite measurements of tropospheric NO2 and HCHO over Eastern China
We present long term observations of atmospheric nitrogen dioxide (NO2) and formaldehyde (HCHO) in Nanjing using a Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument. Ground based MAX-DOAS measurements were performed from April 2013 to February 2017. The MAX-DOAS measurements of NO2 and HCHO vertical column densities (VCDs) are used to validate OMI satellite observations over Nanjing. We developed a new technique to assemble the source contribution map using backward trajectory analysis. The age weighted backward propagation approach is applied to the MAX-DOAS measurements of NO2 and HCHO to reconstruct the spatial distribution of NO2 and HCHO over the Yangtze River Delta during summer and winter time. The reconstructed NO2 fields show a distinct agreement with OMI satellite observations. However, due to the short atmospheric lifetime of HCHO, the backward propagated HCHO data does not show a strong spatial correlation with the OMI HCHO observations. The result shows the MAX-DOAS measurements are sensitive to the air pollution transportation in the Yangtze River Delta, indicating the air quality in Nanjing is significantly influenced by regional transportation of air pollutants. Our results provide a better understanding of the transportation and sources of pollutants in over the Yangtze River Delta as well as the effect of emission control measures during large international event, which are important for the future design of air pollution control policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compact Fiber-Optic Pressure Sensor Based On an Externally Tunable Inter-Modal Converter Fiber Optic Surface Plasmon Resonance Temperature Sensor Based on Hollow Core Fiber Multispectral Imaging for Detection of Adulterants in Turmeric Powder Hydrogen detection with plasmonic palladium-coated tilted fiber Bragg gratings Asymmetrical all-organic waveguide gas sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1