基于相似度的分层聚类的代价函数

S. Dasgupta
{"title":"基于相似度的分层聚类的代价函数","authors":"S. Dasgupta","doi":"10.1145/2897518.2897527","DOIUrl":null,"url":null,"abstract":"The development of algorithms for hierarchical clustering has been hampered by a shortage of precise objective functions. To help address this situation, we introduce a simple cost function on hierarchies over a set of points, given pairwise similarities between those points. We show that this criterion behaves sensibly in canonical instances and that it admits a top-down construction procedure with a provably good approximation ratio.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"168","resultStr":"{\"title\":\"A cost function for similarity-based hierarchical clustering\",\"authors\":\"S. Dasgupta\",\"doi\":\"10.1145/2897518.2897527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of algorithms for hierarchical clustering has been hampered by a shortage of precise objective functions. To help address this situation, we introduce a simple cost function on hierarchies over a set of points, given pairwise similarities between those points. We show that this criterion behaves sensibly in canonical instances and that it admits a top-down construction procedure with a provably good approximation ratio.\",\"PeriodicalId\":442965,\"journal\":{\"name\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"168\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897518.2897527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 168

摘要

由于缺乏精确的目标函数,分层聚类算法的发展一直受到阻碍。为了帮助解决这种情况,我们在一组点的层次结构上引入一个简单的成本函数,给定这些点之间的成对相似性。我们证明了该准则在典型实例中表现得很好,并且它允许一个具有可证明的良好近似比的自上而下的构造过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A cost function for similarity-based hierarchical clustering
The development of algorithms for hierarchical clustering has been hampered by a shortage of precise objective functions. To help address this situation, we introduce a simple cost function on hierarchies over a set of points, given pairwise similarities between those points. We show that this criterion behaves sensibly in canonical instances and that it admits a top-down construction procedure with a provably good approximation ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exponential separation of communication and external information Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Explicit two-source extractors and resilient functions Constant-rate coding for multiparty interactive communication is impossible Approximating connectivity domination in weighted bounded-genus graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1