Yongrui Li, X. Sang, Duo Chen, Peng Wang, Huachun Wang, J. Yuan, Kuiru Wang, B. Yan
{"title":"基于卷积神经网络的DIBR补孔方法","authors":"Yongrui Li, X. Sang, Duo Chen, Peng Wang, Huachun Wang, J. Yuan, Kuiru Wang, B. Yan","doi":"10.1364/CLEOPR.2018.F1F.5","DOIUrl":null,"url":null,"abstract":"There are holes for images generated by Depth-Image-Based Rendering (DIBR)method due to occlusion of foreground. An algorithm to fill holes based on convolutional neural networks is presented. PSNR of the image after filling holes is 32.65dB.","PeriodicalId":184212,"journal":{"name":"2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hole-Filling Method for DIBR Based on Convolutional Neural Network\",\"authors\":\"Yongrui Li, X. Sang, Duo Chen, Peng Wang, Huachun Wang, J. Yuan, Kuiru Wang, B. Yan\",\"doi\":\"10.1364/CLEOPR.2018.F1F.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are holes for images generated by Depth-Image-Based Rendering (DIBR)method due to occlusion of foreground. An algorithm to fill holes based on convolutional neural networks is presented. PSNR of the image after filling holes is 32.65dB.\",\"PeriodicalId\":184212,\"journal\":{\"name\":\"2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/CLEOPR.2018.F1F.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/CLEOPR.2018.F1F.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
基于深度图像渲染(deep - based image - based Rendering, DIBR)方法生成的图像由于前景遮挡存在孔洞。提出了一种基于卷积神经网络的孔填充算法。补孔后图像的PSNR为32.65dB。
A Hole-Filling Method for DIBR Based on Convolutional Neural Network
There are holes for images generated by Depth-Image-Based Rendering (DIBR)method due to occlusion of foreground. An algorithm to fill holes based on convolutional neural networks is presented. PSNR of the image after filling holes is 32.65dB.