基于卷积神经网络的DIBR补孔方法

Yongrui Li, X. Sang, Duo Chen, Peng Wang, Huachun Wang, J. Yuan, Kuiru Wang, B. Yan
{"title":"基于卷积神经网络的DIBR补孔方法","authors":"Yongrui Li, X. Sang, Duo Chen, Peng Wang, Huachun Wang, J. Yuan, Kuiru Wang, B. Yan","doi":"10.1364/CLEOPR.2018.F1F.5","DOIUrl":null,"url":null,"abstract":"There are holes for images generated by Depth-Image-Based Rendering (DIBR)method due to occlusion of foreground. An algorithm to fill holes based on convolutional neural networks is presented. PSNR of the image after filling holes is 32.65dB.","PeriodicalId":184212,"journal":{"name":"2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hole-Filling Method for DIBR Based on Convolutional Neural Network\",\"authors\":\"Yongrui Li, X. Sang, Duo Chen, Peng Wang, Huachun Wang, J. Yuan, Kuiru Wang, B. Yan\",\"doi\":\"10.1364/CLEOPR.2018.F1F.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are holes for images generated by Depth-Image-Based Rendering (DIBR)method due to occlusion of foreground. An algorithm to fill holes based on convolutional neural networks is presented. PSNR of the image after filling holes is 32.65dB.\",\"PeriodicalId\":184212,\"journal\":{\"name\":\"2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/CLEOPR.2018.F1F.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/CLEOPR.2018.F1F.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于深度图像渲染(deep - based image - based Rendering, DIBR)方法生成的图像由于前景遮挡存在孔洞。提出了一种基于卷积神经网络的孔填充算法。补孔后图像的PSNR为32.65dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hole-Filling Method for DIBR Based on Convolutional Neural Network
There are holes for images generated by Depth-Image-Based Rendering (DIBR)method due to occlusion of foreground. An algorithm to fill holes based on convolutional neural networks is presented. PSNR of the image after filling holes is 32.65dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasmono-Atomic Interactions at the Fiber Tip Binary Homodyne Detection for Observing Quadrature Squeezing in Satellite Links Sub-70fs Generation from Passively Mode Locked Erbium Doped Fiber Laser Using 45° Tilted Fiber Grating Wavelength Tunable Bidirectional Q-Switched Fiber Laser Based on Carbon Nanotube Saturable Absorber Ultrahigh-Efficiency Nonlinear Mechanical Intermodal Coupling in High-Q Square Nano-Membrane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1