基于低复杂度双ep的Turbo均衡DFE

Congji Yin, Wenjiang Feng, Junbing Li, Guojun Li
{"title":"基于低复杂度双ep的Turbo均衡DFE","authors":"Congji Yin, Wenjiang Feng, Junbing Li, Guojun Li","doi":"10.23919/eusipco55093.2022.9909782","DOIUrl":null,"url":null,"abstract":"In this paper, a new double expectation propagation-based decision feedback equalizer (DEP-DFE) for server inter-symbol interference (ISI) channels employing turbo equalization is proposed. The EP algorithm is used at the equalizer output and the channel decoder output. The proposed DEP-DFE offers a new approach to alleviate error propagation. Additionally, its computational complexity is nearly half of the EP-based minimum mean square error (MMSE)-based linear equalizer (EP-MMSE-LE) proposed by Santos et al. The bit error ratio performance of the proposed equalizer is verified through simulation in the well-known severely frequency selective Proakis-C channel for different scenarios. Simulation results demonstrate that the proposed DEP-DFE can achieve similar or better performance than the EP-MMSE-LE. Moreover, it has significant improvement over the double expectation propagation-based MMSE-LE (DEP-MMSE-LE).","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-Complexity Double EP-Based DFE for Turbo Equalization\",\"authors\":\"Congji Yin, Wenjiang Feng, Junbing Li, Guojun Li\",\"doi\":\"10.23919/eusipco55093.2022.9909782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new double expectation propagation-based decision feedback equalizer (DEP-DFE) for server inter-symbol interference (ISI) channels employing turbo equalization is proposed. The EP algorithm is used at the equalizer output and the channel decoder output. The proposed DEP-DFE offers a new approach to alleviate error propagation. Additionally, its computational complexity is nearly half of the EP-based minimum mean square error (MMSE)-based linear equalizer (EP-MMSE-LE) proposed by Santos et al. The bit error ratio performance of the proposed equalizer is verified through simulation in the well-known severely frequency selective Proakis-C channel for different scenarios. Simulation results demonstrate that the proposed DEP-DFE can achieve similar or better performance than the EP-MMSE-LE. Moreover, it has significant improvement over the double expectation propagation-based MMSE-LE (DEP-MMSE-LE).\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的基于双期望传播的决策反馈均衡器(deep - dfe),用于服务器码间干扰(ISI)信道。EP算法用于均衡器输出和信道解码器输出。所提出的deep - dfe为减小误差传播提供了一种新的方法。此外,它的计算复杂度几乎是Santos等人提出的基于ep的最小均方误差(MMSE)线性均衡器(EP-MMSE-LE)的一半。在众所周知的严重选频的Proakis-C信道中,通过不同场景的仿真验证了该均衡器的误码率性能。仿真结果表明,所提出的deep - dfe可以达到与EP-MMSE-LE相似或更好的性能。此外,它比基于双期望传播的MMSE-LE (deep -MMSE-LE)有显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Low-Complexity Double EP-Based DFE for Turbo Equalization
In this paper, a new double expectation propagation-based decision feedback equalizer (DEP-DFE) for server inter-symbol interference (ISI) channels employing turbo equalization is proposed. The EP algorithm is used at the equalizer output and the channel decoder output. The proposed DEP-DFE offers a new approach to alleviate error propagation. Additionally, its computational complexity is nearly half of the EP-based minimum mean square error (MMSE)-based linear equalizer (EP-MMSE-LE) proposed by Santos et al. The bit error ratio performance of the proposed equalizer is verified through simulation in the well-known severely frequency selective Proakis-C channel for different scenarios. Simulation results demonstrate that the proposed DEP-DFE can achieve similar or better performance than the EP-MMSE-LE. Moreover, it has significant improvement over the double expectation propagation-based MMSE-LE (DEP-MMSE-LE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1