{"title":"区块链:过去、现在和未来","authors":"Arvind Narayanan","doi":"10.1145/3196959.3197545","DOIUrl":null,"url":null,"abstract":"Blockchain technology is assembled from pieces that have long pedigrees in the academic literature, such as linked timestamping, consensus, and proof of work. In this tutorial, I'll begin by summarizing these components and how they fit together in Bitcoin's blockchain design. Then I'll present abstract models of blockchains; such abstractions help us understand and reason about the similarities and differences between the numerous proposed blockchain designs in a succinct way. Here is one such abstraction. Blockchains can be understood in terms of (1) a log of messages: for example, a ledger of financial transactions; (2) the state that summarizes the result of processing the log: for example, a set of account balances; (3) a set of validity rules for messages/state updates: for example, transactions must spend no more than the available balances, must have verifiable signatures, etc; (4) consistency rules that determine whether two views of the log by different participants on the network are consistent with each other. In the second half of the tutorial I'll describe several research directions, focusing on those likely to be of interest to the PODS community. Here are a few examples. Efficient verification of state. A participant might want to verify a statement about a small part of the global state, such as the inclusion of a particular transaction in the blockchain. While the basics have been worked out, and involve techniques such as hash pointers, Merkle trees, and other \"authenticated data structures\", many interesting questions remain. Reconciling different views of consensus. In the game theory view of blockchains, all players are rational and follow their incentives; there are no honest, faulty, or malicious players. When does this view lead to similar or different predictions compared to the traditional consensus literature? Can we come up with hybrid models that reconcile these assumptions? Scaling and sharding. In traditional designs, the blockchain is fully replicated by every node, leading to massive inefficiency and severely limiting transaction throughput. What are the fundamental limits to scaling, and how can we improve scalability without weakening security? In particular, is it possible to shard the blockchain, that is, partition it among subsets of nodes, given the Byzantine setting?","PeriodicalId":344370,"journal":{"name":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Blockchains: Past, Present, and Future\",\"authors\":\"Arvind Narayanan\",\"doi\":\"10.1145/3196959.3197545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blockchain technology is assembled from pieces that have long pedigrees in the academic literature, such as linked timestamping, consensus, and proof of work. In this tutorial, I'll begin by summarizing these components and how they fit together in Bitcoin's blockchain design. Then I'll present abstract models of blockchains; such abstractions help us understand and reason about the similarities and differences between the numerous proposed blockchain designs in a succinct way. Here is one such abstraction. Blockchains can be understood in terms of (1) a log of messages: for example, a ledger of financial transactions; (2) the state that summarizes the result of processing the log: for example, a set of account balances; (3) a set of validity rules for messages/state updates: for example, transactions must spend no more than the available balances, must have verifiable signatures, etc; (4) consistency rules that determine whether two views of the log by different participants on the network are consistent with each other. In the second half of the tutorial I'll describe several research directions, focusing on those likely to be of interest to the PODS community. Here are a few examples. Efficient verification of state. A participant might want to verify a statement about a small part of the global state, such as the inclusion of a particular transaction in the blockchain. While the basics have been worked out, and involve techniques such as hash pointers, Merkle trees, and other \\\"authenticated data structures\\\", many interesting questions remain. Reconciling different views of consensus. In the game theory view of blockchains, all players are rational and follow their incentives; there are no honest, faulty, or malicious players. When does this view lead to similar or different predictions compared to the traditional consensus literature? Can we come up with hybrid models that reconcile these assumptions? Scaling and sharding. In traditional designs, the blockchain is fully replicated by every node, leading to massive inefficiency and severely limiting transaction throughput. What are the fundamental limits to scaling, and how can we improve scalability without weakening security? In particular, is it possible to shard the blockchain, that is, partition it among subsets of nodes, given the Byzantine setting?\",\"PeriodicalId\":344370,\"journal\":{\"name\":\"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3196959.3197545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3196959.3197545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

区块链技术是由学术文献中有着悠久历史的部分组成的,比如链接的时间戳、共识和工作证明。在本教程中,我将首先总结这些组件以及它们如何在比特币的区块链设计中组合在一起。然后,我将介绍区块链的抽象模型;这样的抽象帮助我们以简洁的方式理解和推理众多提议的区块链设计之间的异同。这里有一个这样的抽象概念。区块链可以被理解为:(1)消息日志:例如,金融交易的分类账;(2)汇总日志处理结果的状态:例如,一组账户余额;(3)一套消息/状态更新的有效性规则:例如,交易必须花费不超过可用余额,必须具有可验证的签名等;(4)一致性规则,确定网络中不同参与者对日志的两个视图是否一致。在本教程的后半部分中,我将描述几个研究方向,重点关注PODS社区可能感兴趣的方向。这里有几个例子。有效的状态验证。参与者可能想要验证关于全局状态的一小部分的陈述,例如在区块链中包含特定交易。虽然已经解决了基础问题,并且涉及到哈希指针、Merkle树和其他“经过身份验证的数据结构”等技术,但仍然存在许多有趣的问题。调和不同的观点。在区块链的博弈论观点中,所有参与者都是理性的,并遵循他们的激励;没有诚实、错误或恶意的玩家。与传统的共识文献相比,这种观点在什么时候会导致类似或不同的预测?我们能否提出一种混合模型来调和这些假设?缩放和分片。在传统设计中,区块链被每个节点完全复制,导致效率低下,严重限制了交易吞吐量。扩展的基本限制是什么,我们如何在不削弱安全性的情况下提高可伸缩性?特别是,在给定拜占庭设置的情况下,是否有可能对区块链进行分片,即在节点子集之间进行分区?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blockchains: Past, Present, and Future
Blockchain technology is assembled from pieces that have long pedigrees in the academic literature, such as linked timestamping, consensus, and proof of work. In this tutorial, I'll begin by summarizing these components and how they fit together in Bitcoin's blockchain design. Then I'll present abstract models of blockchains; such abstractions help us understand and reason about the similarities and differences between the numerous proposed blockchain designs in a succinct way. Here is one such abstraction. Blockchains can be understood in terms of (1) a log of messages: for example, a ledger of financial transactions; (2) the state that summarizes the result of processing the log: for example, a set of account balances; (3) a set of validity rules for messages/state updates: for example, transactions must spend no more than the available balances, must have verifiable signatures, etc; (4) consistency rules that determine whether two views of the log by different participants on the network are consistent with each other. In the second half of the tutorial I'll describe several research directions, focusing on those likely to be of interest to the PODS community. Here are a few examples. Efficient verification of state. A participant might want to verify a statement about a small part of the global state, such as the inclusion of a particular transaction in the blockchain. While the basics have been worked out, and involve techniques such as hash pointers, Merkle trees, and other "authenticated data structures", many interesting questions remain. Reconciling different views of consensus. In the game theory view of blockchains, all players are rational and follow their incentives; there are no honest, faulty, or malicious players. When does this view lead to similar or different predictions compared to the traditional consensus literature? Can we come up with hybrid models that reconcile these assumptions? Scaling and sharding. In traditional designs, the blockchain is fully replicated by every node, leading to massive inefficiency and severely limiting transaction throughput. What are the fundamental limits to scaling, and how can we improve scalability without weakening security? In particular, is it possible to shard the blockchain, that is, partition it among subsets of nodes, given the Byzantine setting?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consistent Query Answering for Primary Keys and Conjunctive Queries with Negated Atoms Enumeration of MSO Queries on Strings with Constant Delay and Logarithmic Updates An Operational Approach to Consistent Query Answering Entity Matching with Active Monotone Classification In-memory Representations of Databases via Succinct Data Structures: Tutorial Abstract
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1