无监督视频对象发现的主题-运动模型

David Liu, Tsuhan Chen
{"title":"无监督视频对象发现的主题-运动模型","authors":"David Liu, Tsuhan Chen","doi":"10.1109/CVPR.2007.383220","DOIUrl":null,"url":null,"abstract":"The bag-of-words representation has attracted a lot of attention recently in the field of object recognition. Based on the bag-of-words representation, topic models such as probabilistic latent semantic analysis (PLSA) have been applied to unsupervised object discovery in still images. In this paper, we extend topic models from still images to motion videos with the integration of a temporal model. We propose a novel spatial-temporal framework that uses topic models for appearance modeling, and the probabilistic data association (PDA) filter for motion modeling. The spatial and temporal models are tightly integrated so that motion ambiguities can be resolved by appearance, and appearance ambiguities can be resolved by motion. We show promising results that cannot be achieved by appearance or motion modeling alone.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"370 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"A Topic-Motion Model for Unsupervised Video Object Discovery\",\"authors\":\"David Liu, Tsuhan Chen\",\"doi\":\"10.1109/CVPR.2007.383220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bag-of-words representation has attracted a lot of attention recently in the field of object recognition. Based on the bag-of-words representation, topic models such as probabilistic latent semantic analysis (PLSA) have been applied to unsupervised object discovery in still images. In this paper, we extend topic models from still images to motion videos with the integration of a temporal model. We propose a novel spatial-temporal framework that uses topic models for appearance modeling, and the probabilistic data association (PDA) filter for motion modeling. The spatial and temporal models are tightly integrated so that motion ambiguities can be resolved by appearance, and appearance ambiguities can be resolved by motion. We show promising results that cannot be achieved by appearance or motion modeling alone.\",\"PeriodicalId\":351008,\"journal\":{\"name\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"370 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2007.383220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

近年来,词袋表示在物体识别领域引起了广泛的关注。基于词袋表示的主题模型,如概率潜在语义分析(PLSA)已被应用于静止图像的无监督对象发现。在本文中,我们将主题模型从静态图像扩展到运动视频,并集成了一个时间模型。我们提出了一个新的时空框架,该框架使用主题模型进行外观建模,并使用概率数据关联(PDA)滤波器进行运动建模。空间和时间模型紧密结合,运动模糊可以通过外观来解决,外观模糊可以通过运动来解决。我们展示了有希望的结果,不能通过外观或运动建模单独实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Topic-Motion Model for Unsupervised Video Object Discovery
The bag-of-words representation has attracted a lot of attention recently in the field of object recognition. Based on the bag-of-words representation, topic models such as probabilistic latent semantic analysis (PLSA) have been applied to unsupervised object discovery in still images. In this paper, we extend topic models from still images to motion videos with the integration of a temporal model. We propose a novel spatial-temporal framework that uses topic models for appearance modeling, and the probabilistic data association (PDA) filter for motion modeling. The spatial and temporal models are tightly integrated so that motion ambiguities can be resolved by appearance, and appearance ambiguities can be resolved by motion. We show promising results that cannot be achieved by appearance or motion modeling alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1