基于群稀疏神经网络的机器人肌肉骨骼模型冗余化简

Shanlin Zhong, Jinhan Zhang, Xiangli Nie
{"title":"基于群稀疏神经网络的机器人肌肉骨骼模型冗余化简","authors":"Shanlin Zhong, Jinhan Zhang, Xiangli Nie","doi":"10.1109/ICCRE51898.2021.9435719","DOIUrl":null,"url":null,"abstract":"Creating robots with similar behavior and appearance to humans has been a long-term dream for roboticists. However, the highly redundant characteristic of the muscle system brings tremendous difficulty for the control and manufacture of the musculoskeletal robot. In this paper, we propose a heuristic pruning-based recurrent neural network method with group sparse regularization to reduce redundancy of muscles in musculoskeletal model, which can maintain the motion accuracy of musculoskeletal robots without activating the redundant muscles. Experiments on an upper extremity musculoskeletal model validate the effectiveness of the proposed method.","PeriodicalId":382619,"journal":{"name":"2021 6th International Conference on Control and Robotics Engineering (ICCRE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redundancy Reduction of Musculoskeletal Model for Robots with Group Sparse Neural Network\",\"authors\":\"Shanlin Zhong, Jinhan Zhang, Xiangli Nie\",\"doi\":\"10.1109/ICCRE51898.2021.9435719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creating robots with similar behavior and appearance to humans has been a long-term dream for roboticists. However, the highly redundant characteristic of the muscle system brings tremendous difficulty for the control and manufacture of the musculoskeletal robot. In this paper, we propose a heuristic pruning-based recurrent neural network method with group sparse regularization to reduce redundancy of muscles in musculoskeletal model, which can maintain the motion accuracy of musculoskeletal robots without activating the redundant muscles. Experiments on an upper extremity musculoskeletal model validate the effectiveness of the proposed method.\",\"PeriodicalId\":382619,\"journal\":{\"name\":\"2021 6th International Conference on Control and Robotics Engineering (ICCRE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th International Conference on Control and Robotics Engineering (ICCRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCRE51898.2021.9435719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Control and Robotics Engineering (ICCRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCRE51898.2021.9435719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

创造与人类行为和外表相似的机器人一直是机器人专家的长期梦想。然而,肌肉系统的高度冗余特性给肌肉骨骼机器人的控制和制造带来了极大的困难。本文提出了一种基于启发式剪枝的递归神经网络分组稀疏正则化方法,以减少肌肉骨骼模型中肌肉的冗余,在不激活冗余肌肉的情况下保持肌肉骨骼机器人的运动精度。上肢肌肉骨骼模型实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Redundancy Reduction of Musculoskeletal Model for Robots with Group Sparse Neural Network
Creating robots with similar behavior and appearance to humans has been a long-term dream for roboticists. However, the highly redundant characteristic of the muscle system brings tremendous difficulty for the control and manufacture of the musculoskeletal robot. In this paper, we propose a heuristic pruning-based recurrent neural network method with group sparse regularization to reduce redundancy of muscles in musculoskeletal model, which can maintain the motion accuracy of musculoskeletal robots without activating the redundant muscles. Experiments on an upper extremity musculoskeletal model validate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiagent Motion Planning Based on Deep Reinforcement Learning in Complex Environments Design of an Unconventional Bionic Quadruped Robot with Low-degree-freedom of Movement Action Recognition Method for Multi-joint Industrial Robots Based on End-arm Vibration and BP Neural Network Multi-Mission Planning of Service Robot Based on L-HMM Obstacle Avoidable G2-continuous Trajectory Generated with Clothoid Spline Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1