一种基于萤火虫算法的优化跟踪方法

V. P. L. Varela, Arthur Oliveira, Paulo Rodrigues, Miller Horvath
{"title":"一种基于萤火虫算法的优化跟踪方法","authors":"V. P. L. Varela, Arthur Oliveira, Paulo Rodrigues, Miller Horvath","doi":"10.1109/BRACIS.2018.00059","DOIUrl":null,"url":null,"abstract":"The Firefly Algorithm (FA) is a meta-heuristic optimization algorithm that mimics the social behaviour of fireflies. The FA is suggested as a good algorithm for tracking, but it still requires too much computational process. This study propose a different approach using the FA as a Tracking Algorithm by using Tsallis Entropy and qFA thresholds from the previous frame as heuristic for the next frame to enhance its speed.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"qFA: An Optimized Based-Tracking Approach Using Firefly Algorithm\",\"authors\":\"V. P. L. Varela, Arthur Oliveira, Paulo Rodrigues, Miller Horvath\",\"doi\":\"10.1109/BRACIS.2018.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Firefly Algorithm (FA) is a meta-heuristic optimization algorithm that mimics the social behaviour of fireflies. The FA is suggested as a good algorithm for tracking, but it still requires too much computational process. This study propose a different approach using the FA as a Tracking Algorithm by using Tsallis Entropy and qFA thresholds from the previous frame as heuristic for the next frame to enhance its speed.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

萤火虫算法(FA)是一个模拟萤火虫社会行为的元启发式优化算法。算法是一种较好的跟踪算法,但其计算量较大。本研究提出了一种不同的方法,利用前一帧的Tsallis熵和qFA阈值作为下一帧的启发式算法,以提高其速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
qFA: An Optimized Based-Tracking Approach Using Firefly Algorithm
The Firefly Algorithm (FA) is a meta-heuristic optimization algorithm that mimics the social behaviour of fireflies. The FA is suggested as a good algorithm for tracking, but it still requires too much computational process. This study propose a different approach using the FA as a Tracking Algorithm by using Tsallis Entropy and qFA thresholds from the previous frame as heuristic for the next frame to enhance its speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1