贝叶斯方法在埃塞俄比亚西南部Tercha总医院5岁以下肺炎患者生存分析中的应用

L. Abate, M. Tadesse
{"title":"贝叶斯方法在埃塞俄比亚西南部Tercha总医院5岁以下肺炎患者生存分析中的应用","authors":"L. Abate, M. Tadesse","doi":"10.11648/J.IJDST.20200601.16","DOIUrl":null,"url":null,"abstract":"Pneumonia is among the major killer diseases in under-five children in the world. In developing countries 3 million children die each year due to pneumonia. Ethiopia is one of the 15 pneumonia high burden countries. The aim of this study was to examine the risk factors of the survival time of under-five pneumonia patients using Bayesian approach analysis. Total of 281 under-five pneumonia patients included in this study. The parametric survival models such as Weibull, Lognormal and Log-logistic baseline distributions were used to fit the datasets by introducing prior distributions. The DIC value was used to compare the baseline distributions, and based on the DIC value the Weibull baseline distribution was selected as good model to fit under-five pneumonia dataset well. The results obtained from the Weibull survival model showed that patients from urban residence and patients who were admitted during patient nurse ratio (PNR) was small; were prolong timing death of under-five pneumonia patients, while patients who admitted during Spring and summer season, patients who suffer comorbidity and severe acute malnutrition (SAM) were shorten timing of death of under-five pneumonia patients. Factors such as sex, residence, Season of Diagnosis, Comorbidity, Severe Acute Malnutrition (SAM), Patient refer status and Patient to Nurse Ratio (PNR) were associated with the survival time of under-five pneumonia in this study. The concerned body should give attention for the factors identified in these study to prevent the mortality of under-five children due to pneumonia.","PeriodicalId":281025,"journal":{"name":"International Journal on Data Science and Technology","volume":"81 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Bayesian Approach Survival Analysis of Under-five Pneumonia Patients in Tercha General Hospital, South West Ethiopia\",\"authors\":\"L. Abate, M. Tadesse\",\"doi\":\"10.11648/J.IJDST.20200601.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pneumonia is among the major killer diseases in under-five children in the world. In developing countries 3 million children die each year due to pneumonia. Ethiopia is one of the 15 pneumonia high burden countries. The aim of this study was to examine the risk factors of the survival time of under-five pneumonia patients using Bayesian approach analysis. Total of 281 under-five pneumonia patients included in this study. The parametric survival models such as Weibull, Lognormal and Log-logistic baseline distributions were used to fit the datasets by introducing prior distributions. The DIC value was used to compare the baseline distributions, and based on the DIC value the Weibull baseline distribution was selected as good model to fit under-five pneumonia dataset well. The results obtained from the Weibull survival model showed that patients from urban residence and patients who were admitted during patient nurse ratio (PNR) was small; were prolong timing death of under-five pneumonia patients, while patients who admitted during Spring and summer season, patients who suffer comorbidity and severe acute malnutrition (SAM) were shorten timing of death of under-five pneumonia patients. Factors such as sex, residence, Season of Diagnosis, Comorbidity, Severe Acute Malnutrition (SAM), Patient refer status and Patient to Nurse Ratio (PNR) were associated with the survival time of under-five pneumonia in this study. The concerned body should give attention for the factors identified in these study to prevent the mortality of under-five children due to pneumonia.\",\"PeriodicalId\":281025,\"journal\":{\"name\":\"International Journal on Data Science and Technology\",\"volume\":\"81 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Data Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJDST.20200601.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Data Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJDST.20200601.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肺炎是世界上五岁以下儿童的主要致命疾病之一。在发展中国家,每年有300万儿童死于肺炎。埃塞俄比亚是15个肺炎高负担国家之一。本研究的目的是利用贝叶斯方法分析5岁以下肺炎患者生存时间的危险因素。本研究共纳入281例5岁以下肺炎患者。通过引入先验分布,使用威布尔、对数正态和对数-logistic基线分布等参数生存模型对数据集进行拟合。采用DIC值比较基线分布,基于DIC值选择Weibull基线分布作为拟合5岁以下肺炎数据集的良好模型。Weibull生存模型结果显示,城市居民患者与住院期间患者的护患比(PNR)较小;延长了5岁以下肺炎患者的死亡时间,而在春夏季节入院的患者、合并疾病和严重急性营养不良(SAM)的患者缩短了5岁以下肺炎患者的死亡时间。性别、居住地、诊断季节、合并症、严重急性营养不良(SAM)、患者转诊状况、患者护士比(PNR)等因素与5岁以下肺炎患者的生存时间相关。有关机构应注意这些研究中确定的因素,以防止五岁以下儿童因肺炎死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Bayesian Approach Survival Analysis of Under-five Pneumonia Patients in Tercha General Hospital, South West Ethiopia
Pneumonia is among the major killer diseases in under-five children in the world. In developing countries 3 million children die each year due to pneumonia. Ethiopia is one of the 15 pneumonia high burden countries. The aim of this study was to examine the risk factors of the survival time of under-five pneumonia patients using Bayesian approach analysis. Total of 281 under-five pneumonia patients included in this study. The parametric survival models such as Weibull, Lognormal and Log-logistic baseline distributions were used to fit the datasets by introducing prior distributions. The DIC value was used to compare the baseline distributions, and based on the DIC value the Weibull baseline distribution was selected as good model to fit under-five pneumonia dataset well. The results obtained from the Weibull survival model showed that patients from urban residence and patients who were admitted during patient nurse ratio (PNR) was small; were prolong timing death of under-five pneumonia patients, while patients who admitted during Spring and summer season, patients who suffer comorbidity and severe acute malnutrition (SAM) were shorten timing of death of under-five pneumonia patients. Factors such as sex, residence, Season of Diagnosis, Comorbidity, Severe Acute Malnutrition (SAM), Patient refer status and Patient to Nurse Ratio (PNR) were associated with the survival time of under-five pneumonia in this study. The concerned body should give attention for the factors identified in these study to prevent the mortality of under-five children due to pneumonia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agent Based Intelligent System for Enhanced Teamwork Performance The Effects of Stress and Chatbot Services Usage on Customer Intention for Purchase on E-commerce Sites Logistics Web Application for the Tracking of Parcels Extractive Text Summarization Using Deep Learning for Tigrigna Language Modelling the Volatility of Central Bank of Kenya Currency Exchange Rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1