基于合同的IEC 61499验证

P. Lindgren, Marcus Lindner, David Pereira, L. M. Pinho
{"title":"基于合同的IEC 61499验证","authors":"P. Lindgren, Marcus Lindner, David Pereira, L. M. Pinho","doi":"10.1109/INDIN.2016.7819147","DOIUrl":null,"url":null,"abstract":"The IEC 61499 standard proposes an event driven execution model for component based (in terms of Function Blocks), distributed industrial automation applications. However, the standard provides only an informal execution semantics, thus in consequence behavior and correctness relies on the design decisions made by the tool vendor. In this paper we present the formalization of a subset of the IEC 61499 standard in order to provide an underpinning for the static verification of Function Block models by means of deductive reasoning. Specifically, we contribute by addressing verification at the component, algorithm, and ECC levels. From Function Block descriptions, enriched with formal contracts, we show that correctness of component compositions, as well as functional and transitional behavior can be ensured. Feasibility of the approach is demonstrated by manually encoding a set of representative use-cases in WhyML, for which the verification conditions are automatically derived (through the Why3 platform) and discharged (using automatic SMT-based solvers). Furthermore, we discuss opportunities and challenges towards deriving certified executables for IEC 61499 models.","PeriodicalId":421680,"journal":{"name":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Contract based verification of IEC 61499\",\"authors\":\"P. Lindgren, Marcus Lindner, David Pereira, L. M. Pinho\",\"doi\":\"10.1109/INDIN.2016.7819147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The IEC 61499 standard proposes an event driven execution model for component based (in terms of Function Blocks), distributed industrial automation applications. However, the standard provides only an informal execution semantics, thus in consequence behavior and correctness relies on the design decisions made by the tool vendor. In this paper we present the formalization of a subset of the IEC 61499 standard in order to provide an underpinning for the static verification of Function Block models by means of deductive reasoning. Specifically, we contribute by addressing verification at the component, algorithm, and ECC levels. From Function Block descriptions, enriched with formal contracts, we show that correctness of component compositions, as well as functional and transitional behavior can be ensured. Feasibility of the approach is demonstrated by manually encoding a set of representative use-cases in WhyML, for which the verification conditions are automatically derived (through the Why3 platform) and discharged (using automatic SMT-based solvers). Furthermore, we discuss opportunities and challenges towards deriving certified executables for IEC 61499 models.\",\"PeriodicalId\":421680,\"journal\":{\"name\":\"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2016.7819147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2016.7819147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

IEC 61499标准为基于组件(就功能块而言)的分布式工业自动化应用程序提出了一个事件驱动的执行模型。然而,该标准只提供了一种非正式的执行语义,因此结果行为和正确性依赖于工具供应商所做的设计决策。在本文中,我们提出了IEC 61499标准的一个子集的形式化,以便通过演绎推理的方式为功能块模型的静态验证提供基础。具体来说,我们通过解决组件、算法和ECC级别的验证来做出贡献。从功能块描述,丰富的正式契约,我们表明组件组合的正确性,以及功能和过渡行为可以得到保证。该方法的可行性是通过在WhyML中手动编码一组代表性用例来证明的,这些用例的验证条件是自动派生的(通过Why3平台)和释放的(使用基于smt的自动求解器)。此外,我们还讨论了为IEC 61499模型生成经过认证的可执行文件的机会和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contract based verification of IEC 61499
The IEC 61499 standard proposes an event driven execution model for component based (in terms of Function Blocks), distributed industrial automation applications. However, the standard provides only an informal execution semantics, thus in consequence behavior and correctness relies on the design decisions made by the tool vendor. In this paper we present the formalization of a subset of the IEC 61499 standard in order to provide an underpinning for the static verification of Function Block models by means of deductive reasoning. Specifically, we contribute by addressing verification at the component, algorithm, and ECC levels. From Function Block descriptions, enriched with formal contracts, we show that correctness of component compositions, as well as functional and transitional behavior can be ensured. Feasibility of the approach is demonstrated by manually encoding a set of representative use-cases in WhyML, for which the verification conditions are automatically derived (through the Why3 platform) and discharged (using automatic SMT-based solvers). Furthermore, we discuss opportunities and challenges towards deriving certified executables for IEC 61499 models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LPV modelling and LPV observer-based fault detection for wind turbine systems Determining the optimal level of autonomy in cyber-physical production systems Detecting illegally parked vehicle based on cumulative dual foreground difference An electronic stethoscope for heart diseases based on micro-electro-mechanical-system microphone A PID controller for the underwater robot station-keeping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1