利用信息增益过滤改进语言模型微调

Javier Turek, Richard Antonello, Nicole M. Beckage, Alexander G. Huth
{"title":"利用信息增益过滤改进语言模型微调","authors":"Javier Turek, Richard Antonello, Nicole M. Beckage, Alexander G. Huth","doi":"10.52591/lxai202207105","DOIUrl":null,"url":null,"abstract":"Language model fine-tuning is essential for modern natural language processing. The effectiveness of fine-tuning is limited by the inclusion of training examples that negatively affect performance. Here we present Information Gain Filtration, a general fine-tuning method, for improving the overall final performance of a fine-tuned model. We define Information Gain of an example as the improvement on a validation metric after training on that example. A secondary learner is then trained to approximate this quantity. During fine-tuning, this learner filters informative examples from uninformative ones. We show that our method is robust and has consistent improvement across datasets, fine-tuning tasks, and language model architectures.","PeriodicalId":350984,"journal":{"name":"LatinX in AI at North American Chapter of the Association for Computational Linguistics Conference 2022","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Language Model Fine-tuning with Information Gain Filtration\",\"authors\":\"Javier Turek, Richard Antonello, Nicole M. Beckage, Alexander G. Huth\",\"doi\":\"10.52591/lxai202207105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Language model fine-tuning is essential for modern natural language processing. The effectiveness of fine-tuning is limited by the inclusion of training examples that negatively affect performance. Here we present Information Gain Filtration, a general fine-tuning method, for improving the overall final performance of a fine-tuned model. We define Information Gain of an example as the improvement on a validation metric after training on that example. A secondary learner is then trained to approximate this quantity. During fine-tuning, this learner filters informative examples from uninformative ones. We show that our method is robust and has consistent improvement across datasets, fine-tuning tasks, and language model architectures.\",\"PeriodicalId\":350984,\"journal\":{\"name\":\"LatinX in AI at North American Chapter of the Association for Computational Linguistics Conference 2022\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LatinX in AI at North American Chapter of the Association for Computational Linguistics Conference 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52591/lxai202207105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at North American Chapter of the Association for Computational Linguistics Conference 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/lxai202207105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语言模型的微调是现代自然语言处理的关键。微调的有效性受到包含负面影响性能的训练示例的限制。在这里,我们提出了信息增益过滤,一种通用的微调方法,用于提高微调模型的整体最终性能。我们将一个例子的信息增益定义为对该例子进行训练后验证度量的改进。然后训练一个二级学习器来接近这个数量。在微调过程中,这个学习器从无信息的例子中过滤出有信息的例子。我们证明了我们的方法是鲁棒的,并且在数据集、微调任务和语言模型架构之间具有一致的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Language Model Fine-tuning with Information Gain Filtration
Language model fine-tuning is essential for modern natural language processing. The effectiveness of fine-tuning is limited by the inclusion of training examples that negatively affect performance. Here we present Information Gain Filtration, a general fine-tuning method, for improving the overall final performance of a fine-tuned model. We define Information Gain of an example as the improvement on a validation metric after training on that example. A secondary learner is then trained to approximate this quantity. During fine-tuning, this learner filters informative examples from uninformative ones. We show that our method is robust and has consistent improvement across datasets, fine-tuning tasks, and language model architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Question Answering on Legal Software Document using BERT based models Incorporating Natural Language Processing models in Mexico City's 311 Locatel Distributed Text Representations Using Transformers for Noisy Written Language Automatic multi-modal processing of language and vision to assist people with visual impairments Improving Language Model Fine-tuning with Information Gain Filtration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1