基于多核相关模型的图像标注多标签预测

Oksana Yakhnenko, Vasant G Honavar
{"title":"基于多核相关模型的图像标注多标签预测","authors":"Oksana Yakhnenko, Vasant G Honavar","doi":"10.1109/CVPRW.2009.5204274","DOIUrl":null,"url":null,"abstract":"Image annotation is a challenging task that allows to correlate text keywords with an image. In this paper we address the problem of image annotation using Kernel Multiple Linear Regression model. Multiple Linear Regression (MLR) model reconstructs image caption from an image by performing a linear transformation of an image into some semantic space, and then recovers the caption by performing another linear transformation from the semantic space into the label space. The model is trained so that model parameters minimize the error of reconstruction directly. This model is related to Canonical Correlation Analysis (CCA) which maps both images and caption into the semantic space to minimize the distance of mapping in the semantic space. Kernel trick is then used for the MLR resulting in Kernel Multiple Linear Regression model. The solution to KMLR is a solution to the generalized eigen-value problem, related to KCCA (Kernel Canonical Correlation Analysis). We then extend Kernel Multiple Linear Regression and Kernel Canonical Correlation analysis models to multiple kernel setting, to allow various representations of images and captions. We present results for image annotation using Multiple Kernel Learning CCA and MLR on Oliva and Torralba (2001) scene recognition that show kernel selection behaviour.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Multiple label prediction for image annotation with multiple Kernel correlation models\",\"authors\":\"Oksana Yakhnenko, Vasant G Honavar\",\"doi\":\"10.1109/CVPRW.2009.5204274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image annotation is a challenging task that allows to correlate text keywords with an image. In this paper we address the problem of image annotation using Kernel Multiple Linear Regression model. Multiple Linear Regression (MLR) model reconstructs image caption from an image by performing a linear transformation of an image into some semantic space, and then recovers the caption by performing another linear transformation from the semantic space into the label space. The model is trained so that model parameters minimize the error of reconstruction directly. This model is related to Canonical Correlation Analysis (CCA) which maps both images and caption into the semantic space to minimize the distance of mapping in the semantic space. Kernel trick is then used for the MLR resulting in Kernel Multiple Linear Regression model. The solution to KMLR is a solution to the generalized eigen-value problem, related to KCCA (Kernel Canonical Correlation Analysis). We then extend Kernel Multiple Linear Regression and Kernel Canonical Correlation analysis models to multiple kernel setting, to allow various representations of images and captions. We present results for image annotation using Multiple Kernel Learning CCA and MLR on Oliva and Torralba (2001) scene recognition that show kernel selection behaviour.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

图像注释是一项具有挑战性的任务,它允许将文本关键字与图像关联起来。本文利用核多元线性回归模型解决了图像标注问题。多元线性回归(Multiple Linear Regression, MLR)模型通过对图像进行某种语义空间的线性变换来重建图像标题,然后对图像进行另一次从语义空间到标签空间的线性变换来恢复图像标题。对模型进行训练,使模型参数直接减小重构误差。该模型与典型相关分析(CCA)有关,典型相关分析将图像和标题都映射到语义空间中,以最小化语义空间中的映射距离。然后将核技巧用于MLR,从而得到核多元线性回归模型。KMLR的解是广义特征值问题的解,与核典型相关分析(KCCA)有关。然后,我们将核多元线性回归和核典型相关分析模型扩展到多个核设置,以允许图像和标题的各种表示。我们展示了在Oliva和Torralba(2001)场景识别上使用多核学习CCA和MLR进行图像注释的结果,这些结果显示了核选择行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple label prediction for image annotation with multiple Kernel correlation models
Image annotation is a challenging task that allows to correlate text keywords with an image. In this paper we address the problem of image annotation using Kernel Multiple Linear Regression model. Multiple Linear Regression (MLR) model reconstructs image caption from an image by performing a linear transformation of an image into some semantic space, and then recovers the caption by performing another linear transformation from the semantic space into the label space. The model is trained so that model parameters minimize the error of reconstruction directly. This model is related to Canonical Correlation Analysis (CCA) which maps both images and caption into the semantic space to minimize the distance of mapping in the semantic space. Kernel trick is then used for the MLR resulting in Kernel Multiple Linear Regression model. The solution to KMLR is a solution to the generalized eigen-value problem, related to KCCA (Kernel Canonical Correlation Analysis). We then extend Kernel Multiple Linear Regression and Kernel Canonical Correlation analysis models to multiple kernel setting, to allow various representations of images and captions. We present results for image annotation using Multiple Kernel Learning CCA and MLR on Oliva and Torralba (2001) scene recognition that show kernel selection behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1