Yu Zhang, C. Bingham, M. Gallimore, Zhijing Yang, Jun Chen
{"title":"利用测量去噪技术进行机器暂态故障检测","authors":"Yu Zhang, C. Bingham, M. Gallimore, Zhijing Yang, Jun Chen","doi":"10.1109/CIVEMSA.2013.6617405","DOIUrl":null,"url":null,"abstract":"The paper reports and demonstrates a computationally efficient method for machine fault detection in industrial turbine systems. Empirical mode decomposition (EMD) and Savitzky-Golay smoothing filters are used for signal denoising, with a resulting noise index being developed. By comparing the noise index with a power index (also derived in the paper), obtained from the detection of transients using a spectral analysis of the rate-of-change of unit power, three operational conditions are identifiable viz. normal operation, transient operation and operation when subject to emerging machine faults. The accommodation of transient operational conditions of the unit, so as not to create excessive `false alerts', provides a valuable alternative to more traditional techniques, based on PCA for instance, that can only provide reliable information during steady-state operation. The efficacy of the proposed approaches is demonstrated through the use of experimental trials on sub-15MW gas turbines.","PeriodicalId":159100,"journal":{"name":"2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Machine fault detection during transient operation using measurement denoising\",\"authors\":\"Yu Zhang, C. Bingham, M. Gallimore, Zhijing Yang, Jun Chen\",\"doi\":\"10.1109/CIVEMSA.2013.6617405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper reports and demonstrates a computationally efficient method for machine fault detection in industrial turbine systems. Empirical mode decomposition (EMD) and Savitzky-Golay smoothing filters are used for signal denoising, with a resulting noise index being developed. By comparing the noise index with a power index (also derived in the paper), obtained from the detection of transients using a spectral analysis of the rate-of-change of unit power, three operational conditions are identifiable viz. normal operation, transient operation and operation when subject to emerging machine faults. The accommodation of transient operational conditions of the unit, so as not to create excessive `false alerts', provides a valuable alternative to more traditional techniques, based on PCA for instance, that can only provide reliable information during steady-state operation. The efficacy of the proposed approaches is demonstrated through the use of experimental trials on sub-15MW gas turbines.\",\"PeriodicalId\":159100,\"journal\":{\"name\":\"2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVEMSA.2013.6617405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2013.6617405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine fault detection during transient operation using measurement denoising
The paper reports and demonstrates a computationally efficient method for machine fault detection in industrial turbine systems. Empirical mode decomposition (EMD) and Savitzky-Golay smoothing filters are used for signal denoising, with a resulting noise index being developed. By comparing the noise index with a power index (also derived in the paper), obtained from the detection of transients using a spectral analysis of the rate-of-change of unit power, three operational conditions are identifiable viz. normal operation, transient operation and operation when subject to emerging machine faults. The accommodation of transient operational conditions of the unit, so as not to create excessive `false alerts', provides a valuable alternative to more traditional techniques, based on PCA for instance, that can only provide reliable information during steady-state operation. The efficacy of the proposed approaches is demonstrated through the use of experimental trials on sub-15MW gas turbines.