基于Harris Hawks优化的机器人路径规划:一个比较评估

A. Loganathan, N. S. Ahmad
{"title":"基于Harris Hawks优化的机器人路径规划:一个比较评估","authors":"A. Loganathan, N. S. Ahmad","doi":"10.1109/ICEPECC57281.2023.10209484","DOIUrl":null,"url":null,"abstract":"Path planning is the task of finding a safe and efficient path for a mobile robot to navigate through an environment while taking into account factors such as energy efficiency and time constraints. This study compares the performance of the Harris Hawks optimization (HHO)-based method with other competing swarm intelligence algorithms such as Whale optimization Algorithm, Sine Cosine Algorithm, and Multi-Verse optimizer Algorithm. By including safety and path length in the cost function, and imposing a constraint on the processing time, simulation results demonstrate that the HHO-based path planning method is able to drive the robot towards the target with the lowest path cost compared to the rest.","PeriodicalId":102289,"journal":{"name":"2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robot Path Planning via Harris Hawks Optimization: A Comparative Assessment\",\"authors\":\"A. Loganathan, N. S. Ahmad\",\"doi\":\"10.1109/ICEPECC57281.2023.10209484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Path planning is the task of finding a safe and efficient path for a mobile robot to navigate through an environment while taking into account factors such as energy efficiency and time constraints. This study compares the performance of the Harris Hawks optimization (HHO)-based method with other competing swarm intelligence algorithms such as Whale optimization Algorithm, Sine Cosine Algorithm, and Multi-Verse optimizer Algorithm. By including safety and path length in the cost function, and imposing a constraint on the processing time, simulation results demonstrate that the HHO-based path planning method is able to drive the robot towards the target with the lowest path cost compared to the rest.\",\"PeriodicalId\":102289,\"journal\":{\"name\":\"2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPECC57281.2023.10209484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPECC57281.2023.10209484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

路径规划的任务是在考虑能源效率和时间限制等因素的情况下,为移动机器人在环境中导航找到一条安全有效的路径。本研究将基于Harris Hawks优化(HHO)的方法与其他竞争的群体智能算法(如Whale优化算法、Sine Cosine算法和Multi-Verse优化算法)的性能进行了比较。仿真结果表明,基于hho的路径规划方法在成本函数中包含了安全性和路径长度,并对处理时间施加了约束,能够以最低的路径成本驱动机器人向目标移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robot Path Planning via Harris Hawks Optimization: A Comparative Assessment
Path planning is the task of finding a safe and efficient path for a mobile robot to navigate through an environment while taking into account factors such as energy efficiency and time constraints. This study compares the performance of the Harris Hawks optimization (HHO)-based method with other competing swarm intelligence algorithms such as Whale optimization Algorithm, Sine Cosine Algorithm, and Multi-Verse optimizer Algorithm. By including safety and path length in the cost function, and imposing a constraint on the processing time, simulation results demonstrate that the HHO-based path planning method is able to drive the robot towards the target with the lowest path cost compared to the rest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Adversarial Networks (GANs) Video Framework: A Systematic Literature Review A Novel Decentralized Coordination Control Scheme for the Complex Transactive Energy Prosumers Biometric Electroencephalogram Based Random Number Generator Seasonal Impact on the Storage Capacity Sizing in a Renewable Energy System Under the Condition of Safe Operation Investigation of Optimum Phase Change Material for PV Panels in Malaysian Climatic Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1