大型浮动煤转运站塑性应变伴随变形的基础研究

Ryo Nishigochi, H. Eto, K. Iizuka, T. Ikoma, Y. Aida, K. Masuda
{"title":"大型浮动煤转运站塑性应变伴随变形的基础研究","authors":"Ryo Nishigochi, H. Eto, K. Iizuka, T. Ikoma, Y. Aida, K. Masuda","doi":"10.1115/omae2020-18962","DOIUrl":null,"url":null,"abstract":"\n Indonesia is the main country supplying coal in the Asia-Pacific region, and in order to secure a stable supply of coal to neighboring countries, efficient coal transportation is required. East Kalimantan Island in Indonesia is the main coal-producing area, but the sea around the island is very shallow and bulk carriers for transporting coal cannot approach the coast. And then, Large-scale Floating Transposition Station for Loading Coal (hereafter LFTS) was proposed, which will be used as a transposition station between small coal barge coming down the river and bulk carriers that stays offshore. LFTS has a two-dimensional extent, and because the bulkheads for separating coal according to quality are installed on the floating body, the rigidity is partially different, and the draft also changes greatly according to the coal loading condition. In this way, LFTS has different characteristics from Mega-Float, which was built in Japan in the late 1990s with the aim of realizing a floating airport, so it is important to clarify its structural characteristics. In order to grasp the stress distribution acting on the structural member in consideration of the influence of the interaction between the overall deformation and the local deformation of LFTS, an analysis in which the entire structure is modeled in detail is desired. However, because members such as the internal bulkheads are arranged in a complicated manner in LFTS, a model in which the entire structure is modeled in detail requires enormous calculation costs in both capacity and time, it is difficult to perform the analysis. In existing research, various models have been studied, but there remains a problem in setting boundary conditions that reproduce the interaction between global and local deformations. And then, in this paper, a new modeling method of LFTS that can be analyzed efficiently was proposed. And the occurrence of stress concentration in the structural members of the LFTS was identified by systematically changing the external force conditions such as the coal loading condition and wave load assumed during the operation of the LFTS, and performing LFTS oscillation analysis and stress deformation analysis. Furthermore, the occurrence of plastic strain due to large deformation was investigated. The stiffening method that efficiently suppresses the occurrence of plastic strain was studied for the locations where the plastic strain was identified by the above analysis. These results demonstrate the importance of modeling large floating structures with complex structures.","PeriodicalId":269406,"journal":{"name":"Volume 5: Ocean Space Utilization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fundamental Study on Plastic Strain Accompanying Deformation in Large-Scale Floating Coal Transshipment Station\",\"authors\":\"Ryo Nishigochi, H. Eto, K. Iizuka, T. Ikoma, Y. Aida, K. Masuda\",\"doi\":\"10.1115/omae2020-18962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Indonesia is the main country supplying coal in the Asia-Pacific region, and in order to secure a stable supply of coal to neighboring countries, efficient coal transportation is required. East Kalimantan Island in Indonesia is the main coal-producing area, but the sea around the island is very shallow and bulk carriers for transporting coal cannot approach the coast. And then, Large-scale Floating Transposition Station for Loading Coal (hereafter LFTS) was proposed, which will be used as a transposition station between small coal barge coming down the river and bulk carriers that stays offshore. LFTS has a two-dimensional extent, and because the bulkheads for separating coal according to quality are installed on the floating body, the rigidity is partially different, and the draft also changes greatly according to the coal loading condition. In this way, LFTS has different characteristics from Mega-Float, which was built in Japan in the late 1990s with the aim of realizing a floating airport, so it is important to clarify its structural characteristics. In order to grasp the stress distribution acting on the structural member in consideration of the influence of the interaction between the overall deformation and the local deformation of LFTS, an analysis in which the entire structure is modeled in detail is desired. However, because members such as the internal bulkheads are arranged in a complicated manner in LFTS, a model in which the entire structure is modeled in detail requires enormous calculation costs in both capacity and time, it is difficult to perform the analysis. In existing research, various models have been studied, but there remains a problem in setting boundary conditions that reproduce the interaction between global and local deformations. And then, in this paper, a new modeling method of LFTS that can be analyzed efficiently was proposed. And the occurrence of stress concentration in the structural members of the LFTS was identified by systematically changing the external force conditions such as the coal loading condition and wave load assumed during the operation of the LFTS, and performing LFTS oscillation analysis and stress deformation analysis. Furthermore, the occurrence of plastic strain due to large deformation was investigated. The stiffening method that efficiently suppresses the occurrence of plastic strain was studied for the locations where the plastic strain was identified by the above analysis. These results demonstrate the importance of modeling large floating structures with complex structures.\",\"PeriodicalId\":269406,\"journal\":{\"name\":\"Volume 5: Ocean Space Utilization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Ocean Space Utilization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2020-18962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Ocean Space Utilization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

印度尼西亚是亚太地区的主要煤炭供应国,为了确保向邻国稳定供应煤炭,需要高效的煤炭运输。印度尼西亚的东加里曼丹岛是主要产煤地区,但该岛周围海域非常浅,运输煤炭的散货船无法靠近海岸。在此基础上,提出了大型浮式装煤换位站(以下简称LFTS),该换位站将作为下游小型煤炭驳船与近海散货船之间的换位站。浮式浮舱具有二维程度,且由于按质量分煤的舱壁安装在浮体上,刚性存在部分差异,吃水也因载煤条件的不同而有较大变化。因此,LFTS与20世纪90年代末在日本建造的旨在实现浮动机场的Mega-Float具有不同的特点,因此阐明其结构特征非常重要。考虑到LFTS整体变形和局部变形相互作用的影响,为了掌握作用在结构构件上的应力分布,需要对整个结构进行详细建模分析。然而,由于内舱壁等构件在LFTS中的布置方式复杂,对整个结构进行详细建模的模型在容量和时间上都需要巨大的计算成本,因此很难进行分析。在现有的研究中,已经研究了各种模型,但仍然存在一个问题,即如何设置边界条件来再现全局和局部变形之间的相互作用。在此基础上,提出了一种有效分析LFTS的建模方法。通过系统地改变LFTS运行过程中所承受的煤荷载、波浪荷载等外力条件,进行LFTS振荡分析和应力变形分析,识别LFTS结构构件是否存在应力集中。进一步研究了大变形引起的塑性应变的发生。针对上述分析识别出塑性应变的位置,研究有效抑制塑性应变发生的加筋方法。这些结果表明了对具有复杂结构的大型浮式结构进行建模的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fundamental Study on Plastic Strain Accompanying Deformation in Large-Scale Floating Coal Transshipment Station
Indonesia is the main country supplying coal in the Asia-Pacific region, and in order to secure a stable supply of coal to neighboring countries, efficient coal transportation is required. East Kalimantan Island in Indonesia is the main coal-producing area, but the sea around the island is very shallow and bulk carriers for transporting coal cannot approach the coast. And then, Large-scale Floating Transposition Station for Loading Coal (hereafter LFTS) was proposed, which will be used as a transposition station between small coal barge coming down the river and bulk carriers that stays offshore. LFTS has a two-dimensional extent, and because the bulkheads for separating coal according to quality are installed on the floating body, the rigidity is partially different, and the draft also changes greatly according to the coal loading condition. In this way, LFTS has different characteristics from Mega-Float, which was built in Japan in the late 1990s with the aim of realizing a floating airport, so it is important to clarify its structural characteristics. In order to grasp the stress distribution acting on the structural member in consideration of the influence of the interaction between the overall deformation and the local deformation of LFTS, an analysis in which the entire structure is modeled in detail is desired. However, because members such as the internal bulkheads are arranged in a complicated manner in LFTS, a model in which the entire structure is modeled in detail requires enormous calculation costs in both capacity and time, it is difficult to perform the analysis. In existing research, various models have been studied, but there remains a problem in setting boundary conditions that reproduce the interaction between global and local deformations. And then, in this paper, a new modeling method of LFTS that can be analyzed efficiently was proposed. And the occurrence of stress concentration in the structural members of the LFTS was identified by systematically changing the external force conditions such as the coal loading condition and wave load assumed during the operation of the LFTS, and performing LFTS oscillation analysis and stress deformation analysis. Furthermore, the occurrence of plastic strain due to large deformation was investigated. The stiffening method that efficiently suppresses the occurrence of plastic strain was studied for the locations where the plastic strain was identified by the above analysis. These results demonstrate the importance of modeling large floating structures with complex structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Tsunami Barrier OMAE2021 Front Matter A Method for Identifying Compatible Locations for Wave Energy Exploration With Different WECs The Fundamental Research on AI Prediction and Determination of Control Force for Maximizing the Power Generation of PA-WEC in Irregular Waves On State-of-the-Art and Alternative Energy-Efficient Lifting Technologies for Deep Sea Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1