Ahmed M. Shuikan, S. Alharbi, D. H. Alkhalifah, W. Hozzein
{"title":"高通量测序和宏基因组数据分析","authors":"Ahmed M. Shuikan, S. Alharbi, D. H. Alkhalifah, W. Hozzein","doi":"10.5772/intechopen.89944","DOIUrl":null,"url":null,"abstract":"Metagenomic approaches are a growing branch of science and have many applications in different fields. Metagenomics seems to be the ideal culture-independent technique for unraveling the biodiversity of soils and to study how this biodiversity is affected with continuously changing conditions. In addition, its application in clinical and diagnostic approaches was reported. The emergence of several next-generation sequencing (NGS) strategies enriched the metagenomics. The combination between NGS and metagenomic approaches helped the investigators resolve several issues regarding the microbial diversity and the functions and relationships among different microbial flora. A number of NGS approaches were developed including Roche/454 pyrosequencing, Illumina/Solexa sequencing, and Applied Biosystems/SOLiD sequencing. In this chapter, different NGS platforms are discussed in terms of principle, advantages, and limitations. In addition, third-generation sequencing technologies are also addressed.","PeriodicalId":286811,"journal":{"name":"Metagenomics - Basics, Methods and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"High-Throughput Sequencing and Metagenomic Data Analysis\",\"authors\":\"Ahmed M. Shuikan, S. Alharbi, D. H. Alkhalifah, W. Hozzein\",\"doi\":\"10.5772/intechopen.89944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metagenomic approaches are a growing branch of science and have many applications in different fields. Metagenomics seems to be the ideal culture-independent technique for unraveling the biodiversity of soils and to study how this biodiversity is affected with continuously changing conditions. In addition, its application in clinical and diagnostic approaches was reported. The emergence of several next-generation sequencing (NGS) strategies enriched the metagenomics. The combination between NGS and metagenomic approaches helped the investigators resolve several issues regarding the microbial diversity and the functions and relationships among different microbial flora. A number of NGS approaches were developed including Roche/454 pyrosequencing, Illumina/Solexa sequencing, and Applied Biosystems/SOLiD sequencing. In this chapter, different NGS platforms are discussed in terms of principle, advantages, and limitations. In addition, third-generation sequencing technologies are also addressed.\",\"PeriodicalId\":286811,\"journal\":{\"name\":\"Metagenomics - Basics, Methods and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metagenomics - Basics, Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.89944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metagenomics - Basics, Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.89944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Throughput Sequencing and Metagenomic Data Analysis
Metagenomic approaches are a growing branch of science and have many applications in different fields. Metagenomics seems to be the ideal culture-independent technique for unraveling the biodiversity of soils and to study how this biodiversity is affected with continuously changing conditions. In addition, its application in clinical and diagnostic approaches was reported. The emergence of several next-generation sequencing (NGS) strategies enriched the metagenomics. The combination between NGS and metagenomic approaches helped the investigators resolve several issues regarding the microbial diversity and the functions and relationships among different microbial flora. A number of NGS approaches were developed including Roche/454 pyrosequencing, Illumina/Solexa sequencing, and Applied Biosystems/SOLiD sequencing. In this chapter, different NGS platforms are discussed in terms of principle, advantages, and limitations. In addition, third-generation sequencing technologies are also addressed.