枕叶与前额叶脑电谱比较早期检测驾驶员睡意

Saad Arif, Mahad Arif, Saba Munawar, Y. Ayaz, Muhammad Jawad Khan, Noman Naseer
{"title":"枕叶与前额叶脑电谱比较早期检测驾驶员睡意","authors":"Saad Arif, Mahad Arif, Saba Munawar, Y. Ayaz, Muhammad Jawad Khan, Noman Naseer","doi":"10.1109/AIMS52415.2021.9466007","DOIUrl":null,"url":null,"abstract":"A passive brain-computer interface (BCI) based upon electroencephalography (EEG) brain signals was developed to classify alert and drowsy states during the driving task. This BCI modality acquired electrical neuronal activity of five healthy male subjects from prefrontal and occipital cortices of the human brain for earlier drowsiness detection. Brain activity is recorded using a 16-channel EEG headset from these brain locations. Sleep-deprived subjects drove the vehicle in a simulated driving environment while neuronal activity was continuously monitored in prefrontal and occipital regions. Spectral band power and power spectral density estimate for $\\alpha$ and $\\beta$ frequency bands were used as features along with k-nearest neighbor (kNN) and support vector machine (SVM) classifiers. Average classification accuracies are 95.8% for kNN and 93.8% for SVM with a 10-fold cross-validation model. Spectral analysis shows that $\\alpha$-rhythms are more prominent in the occipital region as compared to the prefrontal region during drowsy driving and hence vision-based brain data is more effective for earlier detection as compared to the focus-based brain data. The proposed EEG-based passive BCI scheme is promising for earlier differentiation between drowsy and alert states from the occipital region of the human brain.","PeriodicalId":299121,"journal":{"name":"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"EEG Spectral Comparison Between Occipital and Prefrontal Cortices for Early Detection of Driver Drowsiness\",\"authors\":\"Saad Arif, Mahad Arif, Saba Munawar, Y. Ayaz, Muhammad Jawad Khan, Noman Naseer\",\"doi\":\"10.1109/AIMS52415.2021.9466007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A passive brain-computer interface (BCI) based upon electroencephalography (EEG) brain signals was developed to classify alert and drowsy states during the driving task. This BCI modality acquired electrical neuronal activity of five healthy male subjects from prefrontal and occipital cortices of the human brain for earlier drowsiness detection. Brain activity is recorded using a 16-channel EEG headset from these brain locations. Sleep-deprived subjects drove the vehicle in a simulated driving environment while neuronal activity was continuously monitored in prefrontal and occipital regions. Spectral band power and power spectral density estimate for $\\\\alpha$ and $\\\\beta$ frequency bands were used as features along with k-nearest neighbor (kNN) and support vector machine (SVM) classifiers. Average classification accuracies are 95.8% for kNN and 93.8% for SVM with a 10-fold cross-validation model. Spectral analysis shows that $\\\\alpha$-rhythms are more prominent in the occipital region as compared to the prefrontal region during drowsy driving and hence vision-based brain data is more effective for earlier detection as compared to the focus-based brain data. The proposed EEG-based passive BCI scheme is promising for earlier differentiation between drowsy and alert states from the occipital region of the human brain.\",\"PeriodicalId\":299121,\"journal\":{\"name\":\"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIMS52415.2021.9466007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMS52415.2021.9466007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于脑电图(EEG)信号的被动脑机接口(BCI),用于对驾驶过程中的清醒和困倦状态进行分类。该脑机接口模式从人类大脑前额叶和枕叶皮层获取5名健康男性受试者的电神经元活动,用于早期嗜睡检测。大脑活动是用16通道脑电图耳机从这些大脑位置记录下来的。睡眠不足的受试者在模拟驾驶环境中驾驶车辆,同时持续监测前额叶和枕叶区域的神经元活动。使用$\alpha$和$\beta$频段的频谱带功率和功率谱密度估计作为特征,以及k-最近邻(kNN)和支持向量机(SVM)分类器。平均分类准确率为95.8% for kNN and 93.8% for SVM with a 10-fold cross-validation model. Spectral analysis shows that $\alpha$-rhythms are more prominent in the occipital region as compared to the prefrontal region during drowsy driving and hence vision-based brain data is more effective for earlier detection as compared to the focus-based brain data. The proposed EEG-based passive BCI scheme is promising for earlier differentiation between drowsy and alert states from the occipital region of the human brain.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EEG Spectral Comparison Between Occipital and Prefrontal Cortices for Early Detection of Driver Drowsiness
A passive brain-computer interface (BCI) based upon electroencephalography (EEG) brain signals was developed to classify alert and drowsy states during the driving task. This BCI modality acquired electrical neuronal activity of five healthy male subjects from prefrontal and occipital cortices of the human brain for earlier drowsiness detection. Brain activity is recorded using a 16-channel EEG headset from these brain locations. Sleep-deprived subjects drove the vehicle in a simulated driving environment while neuronal activity was continuously monitored in prefrontal and occipital regions. Spectral band power and power spectral density estimate for $\alpha$ and $\beta$ frequency bands were used as features along with k-nearest neighbor (kNN) and support vector machine (SVM) classifiers. Average classification accuracies are 95.8% for kNN and 93.8% for SVM with a 10-fold cross-validation model. Spectral analysis shows that $\alpha$-rhythms are more prominent in the occipital region as compared to the prefrontal region during drowsy driving and hence vision-based brain data is more effective for earlier detection as compared to the focus-based brain data. The proposed EEG-based passive BCI scheme is promising for earlier differentiation between drowsy and alert states from the occipital region of the human brain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Feasibility Study of M2M/IoT Numbering Model in Indonesia Classification of sensorimotor cortex signals based on the task durations: an fNIRS-BCI study A genetic algorithm with an elitism replacement method for solving the nonfunctional web service composition under fuzzy QoS parameters The Effect of Wave Stirring Mechanism in Improving Heating Uniformity in Microwave Chamber For Fishing Industry A Survey of Emotion Recognition using Physiological Signal in Wearable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1