利用综合数据训练少数据深度神经网络

Cheng-Shao Chiang, C.-S. Shih
{"title":"利用综合数据训练少数据深度神经网络","authors":"Cheng-Shao Chiang, C.-S. Shih","doi":"10.1145/3400286.3418244","DOIUrl":null,"url":null,"abstract":"As Computer-Assisted Surgery (CAS) getting popular, more and more research has been conducted to help surgeons operate. We aim at the semantic segmentation in the endoscopy surgery scenario because semantic segmentation is the first step for a computer to grasp what shows up in the vision of an endoscope. However, modern Deep Learning algorithms need myriads of training data. Since data of the endoscopy surgery scene is relatively scarce, the performance of existing algorithms is thus rather limited. Therefore, we tried to solve the problem of training a semantic segmentation network with few data in this work. We propose a proof-of-concept system offering the ability to enlarge the dataset and improve the performance. The system aims to synthesize a pair of training data in a single pass and provides a sufficient amount of data to train a network. We evaluated our method using the dataset provided by MICCAI 2018 Robotic Scene Segmentation Sub-Challenge. Our method yielded 11.79% mIoU improvement in recognizing anatomical objects and 2.2% mIoU in recognizing surgical instruments. Recognizing anatomical objects accurately would definitely benefit CAS. Preliminary results suggest our method helps the classifier become more robust and accurate even if not having large amount of data.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Synthesized Data to Train Deep Neural Net with Few Data\",\"authors\":\"Cheng-Shao Chiang, C.-S. Shih\",\"doi\":\"10.1145/3400286.3418244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As Computer-Assisted Surgery (CAS) getting popular, more and more research has been conducted to help surgeons operate. We aim at the semantic segmentation in the endoscopy surgery scenario because semantic segmentation is the first step for a computer to grasp what shows up in the vision of an endoscope. However, modern Deep Learning algorithms need myriads of training data. Since data of the endoscopy surgery scene is relatively scarce, the performance of existing algorithms is thus rather limited. Therefore, we tried to solve the problem of training a semantic segmentation network with few data in this work. We propose a proof-of-concept system offering the ability to enlarge the dataset and improve the performance. The system aims to synthesize a pair of training data in a single pass and provides a sufficient amount of data to train a network. We evaluated our method using the dataset provided by MICCAI 2018 Robotic Scene Segmentation Sub-Challenge. Our method yielded 11.79% mIoU improvement in recognizing anatomical objects and 2.2% mIoU in recognizing surgical instruments. Recognizing anatomical objects accurately would definitely benefit CAS. Preliminary results suggest our method helps the classifier become more robust and accurate even if not having large amount of data.\",\"PeriodicalId\":326100,\"journal\":{\"name\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3400286.3418244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400286.3418244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着计算机辅助手术(CAS)的普及,越来越多的研究被用于帮助外科医生进行手术。我们的目标是内窥镜手术场景中的语义分割,因为语义分割是计算机掌握内窥镜视觉中显示的内容的第一步。然而,现代深度学习算法需要大量的训练数据。由于内窥镜手术场景的数据相对较少,现有算法的性能相当有限。因此,我们在这项工作中试图解决在数据较少的情况下训练语义分割网络的问题。我们提出了一个概念验证系统,提供了扩大数据集和提高性能的能力。该系统旨在一次合成一对训练数据,并提供足够的数据量来训练网络。我们使用MICCAI 2018机器人场景分割子挑战提供的数据集评估了我们的方法。该方法在解剖物体识别上的mIoU提高了11.79%,在手术器械识别上的mIoU提高了2.2%。准确识别解剖对象对CAS无疑是有益的。初步结果表明,即使没有大量的数据,我们的方法也可以帮助分类器变得更加鲁棒和准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Synthesized Data to Train Deep Neural Net with Few Data
As Computer-Assisted Surgery (CAS) getting popular, more and more research has been conducted to help surgeons operate. We aim at the semantic segmentation in the endoscopy surgery scenario because semantic segmentation is the first step for a computer to grasp what shows up in the vision of an endoscope. However, modern Deep Learning algorithms need myriads of training data. Since data of the endoscopy surgery scene is relatively scarce, the performance of existing algorithms is thus rather limited. Therefore, we tried to solve the problem of training a semantic segmentation network with few data in this work. We propose a proof-of-concept system offering the ability to enlarge the dataset and improve the performance. The system aims to synthesize a pair of training data in a single pass and provides a sufficient amount of data to train a network. We evaluated our method using the dataset provided by MICCAI 2018 Robotic Scene Segmentation Sub-Challenge. Our method yielded 11.79% mIoU improvement in recognizing anatomical objects and 2.2% mIoU in recognizing surgical instruments. Recognizing anatomical objects accurately would definitely benefit CAS. Preliminary results suggest our method helps the classifier become more robust and accurate even if not having large amount of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Extrinsic Depth Camera Calibration Method for Narrow Field of View Color Camera Motion Mode Recognition for Traffic Safety in Campus Guiding Application Failure Prediction by Utilizing Log Analysis: A Systematic Mapping Study PerfNet Road Surface Profiling based on Artificial-Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1