你的选择是什么?:学习混合多项式

A. Ammar, Sewoong Oh, D. Shah, L. Voloch
{"title":"你的选择是什么?:学习混合多项式","authors":"A. Ammar, Sewoong Oh, D. Shah, L. Voloch","doi":"10.1145/2591971.2592020","DOIUrl":null,"url":null,"abstract":"Computing a ranking over choices using consumer data gathered from a heterogenous population has become an indispensable module for any modern consumer information system, e.g. Yelp, Netflix, Amazon and app-stores like Google play. In such applications, a ranking or recommendation algorithm needs to extract meaningful information from noisy data accurately and in a scalable manner. A principled approach to resolve this challenge requires a model that connects observations to recommendation decisions and a tractable inference algorithm utilizing this model. To that end, we abstract the preference data generated by consumers as noisy, partial realizations of their innate preferences, i.e. orderings or permutations over choices. Inspired by the seminal works of Samuelson (cf. axiom of revealed preferences) and that of McFadden (cf. discrete choice models for transportation), we model the population's innate preferences as a mixture of the so called Multi-nomial Logit (MMNL) model. Under this model, the recommendation problem boils down to (a) learning the MMNL model from population data, (b) finding am MNL component within the mixture that closely represents the revealed preferences of the consumer at hand, and (c) recommending other choices to her/him that are ranked high according to thus found component. In this work, we address the problem of learning MMNL model from partial preferences. We identify fundamental limitations of any algorithm to learn such a model as well as provide conditions under which, a simple, data-driven (non-parametric) algorithm learns the model effectively. The proposed algorithm has a pleasant similarity to the standard collaborative filtering for scalar (or star) ratings, but in the domain of permutations. This work advances the state-of-art in the domain of learning distribution over permutations (cf. [2]) as well as in the context of learning mixture distributions (cf. [4]).","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"What's your choice?: learning the mixed multi-nomial\",\"authors\":\"A. Ammar, Sewoong Oh, D. Shah, L. Voloch\",\"doi\":\"10.1145/2591971.2592020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing a ranking over choices using consumer data gathered from a heterogenous population has become an indispensable module for any modern consumer information system, e.g. Yelp, Netflix, Amazon and app-stores like Google play. In such applications, a ranking or recommendation algorithm needs to extract meaningful information from noisy data accurately and in a scalable manner. A principled approach to resolve this challenge requires a model that connects observations to recommendation decisions and a tractable inference algorithm utilizing this model. To that end, we abstract the preference data generated by consumers as noisy, partial realizations of their innate preferences, i.e. orderings or permutations over choices. Inspired by the seminal works of Samuelson (cf. axiom of revealed preferences) and that of McFadden (cf. discrete choice models for transportation), we model the population's innate preferences as a mixture of the so called Multi-nomial Logit (MMNL) model. Under this model, the recommendation problem boils down to (a) learning the MMNL model from population data, (b) finding am MNL component within the mixture that closely represents the revealed preferences of the consumer at hand, and (c) recommending other choices to her/him that are ranked high according to thus found component. In this work, we address the problem of learning MMNL model from partial preferences. We identify fundamental limitations of any algorithm to learn such a model as well as provide conditions under which, a simple, data-driven (non-parametric) algorithm learns the model effectively. The proposed algorithm has a pleasant similarity to the standard collaborative filtering for scalar (or star) ratings, but in the domain of permutations. This work advances the state-of-art in the domain of learning distribution over permutations (cf. [2]) as well as in the context of learning mixture distributions (cf. [4]).\",\"PeriodicalId\":306456,\"journal\":{\"name\":\"Measurement and Modeling of Computer Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591971.2592020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591971.2592020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

使用从异质人群中收集的消费者数据来计算选择排名已经成为任何现代消费者信息系统不可或缺的模块,例如Yelp、Netflix、亚马逊和像Google play这样的应用商店。在此类应用中,排序或推荐算法需要以可扩展的方式准确地从噪声数据中提取有意义的信息。解决这一挑战的原则性方法需要一个将观察结果与建议决策联系起来的模型,以及利用该模型的易于处理的推理算法。为此,我们将消费者产生的偏好数据抽象为嘈杂的,部分实现其先天偏好的数据,即对选择的排序或排列。受萨缪尔森(参见“揭示偏好公理”)和麦克法登(参见“运输的离散选择模型”)的开创性著作的启发,我们将人口的先天偏好建模为所谓的多项式Logit (MMNL)模型的混合体。在该模型下,推荐问题归结为(a)从人口数据中学习MMNL模型,(b)在混合物中找到一个与消费者的显示偏好密切相关的MNL组件,以及(c)根据所找到的组件向她/他推荐排名较高的其他选择。在这项工作中,我们解决了从部分偏好中学习MMNL模型的问题。我们确定了学习这种模型的任何算法的基本限制,并提供了一个简单的,数据驱动的(非参数)算法有效学习模型的条件。提出的算法与标准的标量(或星形)评级协同过滤具有令人愉快的相似性,但在排列领域。这项工作在置换学习分布领域(参见[2])以及学习混合分布的背景下(参见[4])推进了目前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What's your choice?: learning the mixed multi-nomial
Computing a ranking over choices using consumer data gathered from a heterogenous population has become an indispensable module for any modern consumer information system, e.g. Yelp, Netflix, Amazon and app-stores like Google play. In such applications, a ranking or recommendation algorithm needs to extract meaningful information from noisy data accurately and in a scalable manner. A principled approach to resolve this challenge requires a model that connects observations to recommendation decisions and a tractable inference algorithm utilizing this model. To that end, we abstract the preference data generated by consumers as noisy, partial realizations of their innate preferences, i.e. orderings or permutations over choices. Inspired by the seminal works of Samuelson (cf. axiom of revealed preferences) and that of McFadden (cf. discrete choice models for transportation), we model the population's innate preferences as a mixture of the so called Multi-nomial Logit (MMNL) model. Under this model, the recommendation problem boils down to (a) learning the MMNL model from population data, (b) finding am MNL component within the mixture that closely represents the revealed preferences of the consumer at hand, and (c) recommending other choices to her/him that are ranked high according to thus found component. In this work, we address the problem of learning MMNL model from partial preferences. We identify fundamental limitations of any algorithm to learn such a model as well as provide conditions under which, a simple, data-driven (non-parametric) algorithm learns the model effectively. The proposed algorithm has a pleasant similarity to the standard collaborative filtering for scalar (or star) ratings, but in the domain of permutations. This work advances the state-of-art in the domain of learning distribution over permutations (cf. [2]) as well as in the context of learning mixture distributions (cf. [4]).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Queueing delays in buffered multistage interconnection networks Data dissemination performance in large-scale sensor networks Index policies for a multi-class queue with convex holding cost and abandonments Neighbor-cell assisted error correction for MLC NAND flash memories Collecting, organizing, and sharing pins in pinterest: interest-driven or social-driven?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1