{"title":"测量来自GPS L1波段UWB发射机的干扰","authors":"T. Van Slyke, W. Kuhn, B. Natarajan","doi":"10.1109/RWS.2008.4463635","DOIUrl":null,"url":null,"abstract":"This paper presents quantitative interference measurements from a commercially available ultra-wide-band (UWB) transmitter in the global positioning system (GPS) LI band (1575.42 MHz) to investigate the possibility of co-locating UWB and GPS radios. Theoretical analysis shows that a single UWB transmitter conforming to the United States Federal Communications Commission (FCC) specifications could degrade the sensitivity of a GPS receiver by three decibels if both radios were separated by a distance of 1.33 meters. In this work, we measure radiation from the transmitting antenna and associated circuitry of a UWB (multi-band orthogonal frequency division multiplexing) based commercial USB device. Our measurements reveal that the circuitry associated with the UWB device is a significant source of interference while the interference due to antenna transmissions is minimal. Therefore, we believe that adequate shielding of UWB circuitry is necessary to allow a UWB transmitter and a GPS receiver to be co-located.","PeriodicalId":431471,"journal":{"name":"2008 IEEE Radio and Wireless Symposium","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Measuring interference from a UWB transmitter in the GPS L1 band\",\"authors\":\"T. Van Slyke, W. Kuhn, B. Natarajan\",\"doi\":\"10.1109/RWS.2008.4463635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents quantitative interference measurements from a commercially available ultra-wide-band (UWB) transmitter in the global positioning system (GPS) LI band (1575.42 MHz) to investigate the possibility of co-locating UWB and GPS radios. Theoretical analysis shows that a single UWB transmitter conforming to the United States Federal Communications Commission (FCC) specifications could degrade the sensitivity of a GPS receiver by three decibels if both radios were separated by a distance of 1.33 meters. In this work, we measure radiation from the transmitting antenna and associated circuitry of a UWB (multi-band orthogonal frequency division multiplexing) based commercial USB device. Our measurements reveal that the circuitry associated with the UWB device is a significant source of interference while the interference due to antenna transmissions is minimal. Therefore, we believe that adequate shielding of UWB circuitry is necessary to allow a UWB transmitter and a GPS receiver to be co-located.\",\"PeriodicalId\":431471,\"journal\":{\"name\":\"2008 IEEE Radio and Wireless Symposium\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Radio and Wireless Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS.2008.4463635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Radio and Wireless Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2008.4463635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measuring interference from a UWB transmitter in the GPS L1 band
This paper presents quantitative interference measurements from a commercially available ultra-wide-band (UWB) transmitter in the global positioning system (GPS) LI band (1575.42 MHz) to investigate the possibility of co-locating UWB and GPS radios. Theoretical analysis shows that a single UWB transmitter conforming to the United States Federal Communications Commission (FCC) specifications could degrade the sensitivity of a GPS receiver by three decibels if both radios were separated by a distance of 1.33 meters. In this work, we measure radiation from the transmitting antenna and associated circuitry of a UWB (multi-band orthogonal frequency division multiplexing) based commercial USB device. Our measurements reveal that the circuitry associated with the UWB device is a significant source of interference while the interference due to antenna transmissions is minimal. Therefore, we believe that adequate shielding of UWB circuitry is necessary to allow a UWB transmitter and a GPS receiver to be co-located.