{"title":"基于FPGA的正则表达式匹配NFA约简","authors":"V. Kosar, M. Zádník, J. Korenek","doi":"10.1109/FPT.2013.6718381","DOIUrl":null,"url":null,"abstract":"Many algorithms have been proposed to accelerate regular expression matching via mapping of a nondeterministic finite automaton into a circuit implemented in an FPGA. These algorithms exploit unique features of the FPGA to achieve high throughput. On the other hand the FPGA poses a limit on the number of regular expressions by its limited resources. In this paper, we investigate applicability of NFA reduction techniques - a formal aparatus to reduce the number of states and transitions in NFA prior to its mapping into FPGA. The paper presents several NFA reduction techniques, each with a different reduction power and time complexity. The evaluation utilizes regular expressions from Snort and L7 decoder. The best NFA reduction algorithms achieve more than 66% reduction in the number of states for a Snort ftp module. Such a reduction translates directly into 66% LUT-FF pairs saving in the FPGA.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"NFA reduction for regular expressions matching using FPGA\",\"authors\":\"V. Kosar, M. Zádník, J. Korenek\",\"doi\":\"10.1109/FPT.2013.6718381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many algorithms have been proposed to accelerate regular expression matching via mapping of a nondeterministic finite automaton into a circuit implemented in an FPGA. These algorithms exploit unique features of the FPGA to achieve high throughput. On the other hand the FPGA poses a limit on the number of regular expressions by its limited resources. In this paper, we investigate applicability of NFA reduction techniques - a formal aparatus to reduce the number of states and transitions in NFA prior to its mapping into FPGA. The paper presents several NFA reduction techniques, each with a different reduction power and time complexity. The evaluation utilizes regular expressions from Snort and L7 decoder. The best NFA reduction algorithms achieve more than 66% reduction in the number of states for a Snort ftp module. Such a reduction translates directly into 66% LUT-FF pairs saving in the FPGA.\",\"PeriodicalId\":344469,\"journal\":{\"name\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2013.6718381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NFA reduction for regular expressions matching using FPGA
Many algorithms have been proposed to accelerate regular expression matching via mapping of a nondeterministic finite automaton into a circuit implemented in an FPGA. These algorithms exploit unique features of the FPGA to achieve high throughput. On the other hand the FPGA poses a limit on the number of regular expressions by its limited resources. In this paper, we investigate applicability of NFA reduction techniques - a formal aparatus to reduce the number of states and transitions in NFA prior to its mapping into FPGA. The paper presents several NFA reduction techniques, each with a different reduction power and time complexity. The evaluation utilizes regular expressions from Snort and L7 decoder. The best NFA reduction algorithms achieve more than 66% reduction in the number of states for a Snort ftp module. Such a reduction translates directly into 66% LUT-FF pairs saving in the FPGA.