从基本块视图并行缩放属性

Melanie Kambadur, K. Tang, Joshua Lopez, Martha A. Kim
{"title":"从基本块视图并行缩放属性","authors":"Melanie Kambadur, K. Tang, Joshua Lopez, Martha A. Kim","doi":"10.1145/2465529.2465748","DOIUrl":null,"url":null,"abstract":"As software scalability lags behind hardware parallelism, understanding scaling behavior is more important than ever. This paper demonstrates how to use Parallel Block Vector (PBV) profiles to measure the scaling properties of multithreaded programs from a new perspective: the basic block's view. Through this lens, we guide users through quick and simple methods to produce high-resolution application scaling analyses. This method requires no manual program modification, new hardware, or lengthy simulations, and captures the impact of architecture, operating systems, threading models, and inputs. We apply these techniques to a set of parallel benchmarks, and, as an example, demonstrate that when it comes to scaling, functions in an application do not behave monolithically.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"10 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parallel scaling properties from a basic block view\",\"authors\":\"Melanie Kambadur, K. Tang, Joshua Lopez, Martha A. Kim\",\"doi\":\"10.1145/2465529.2465748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As software scalability lags behind hardware parallelism, understanding scaling behavior is more important than ever. This paper demonstrates how to use Parallel Block Vector (PBV) profiles to measure the scaling properties of multithreaded programs from a new perspective: the basic block's view. Through this lens, we guide users through quick and simple methods to produce high-resolution application scaling analyses. This method requires no manual program modification, new hardware, or lengthy simulations, and captures the impact of architecture, operating systems, threading models, and inputs. We apply these techniques to a set of parallel benchmarks, and, as an example, demonstrate that when it comes to scaling, functions in an application do not behave monolithically.\",\"PeriodicalId\":306456,\"journal\":{\"name\":\"Measurement and Modeling of Computer Systems\",\"volume\":\"10 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465529.2465748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465529.2465748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于软件可伸缩性落后于硬件并行性,因此理解可伸缩性行为比以往任何时候都更加重要。本文从一个新的角度:基本块视图,演示了如何使用并行块向量(PBV)配置文件来测量多线程程序的缩放特性。通过这个镜头,我们指导用户通过快速和简单的方法来产生高分辨率的应用程序扩展分析。该方法不需要手动修改程序、新硬件或冗长的模拟,并且可以捕获体系结构、操作系统、线程模型和输入的影响。我们将这些技术应用于一组并行基准测试,并举例说明,当涉及到扩展时,应用程序中的功能不会表现为单体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel scaling properties from a basic block view
As software scalability lags behind hardware parallelism, understanding scaling behavior is more important than ever. This paper demonstrates how to use Parallel Block Vector (PBV) profiles to measure the scaling properties of multithreaded programs from a new perspective: the basic block's view. Through this lens, we guide users through quick and simple methods to produce high-resolution application scaling analyses. This method requires no manual program modification, new hardware, or lengthy simulations, and captures the impact of architecture, operating systems, threading models, and inputs. We apply these techniques to a set of parallel benchmarks, and, as an example, demonstrate that when it comes to scaling, functions in an application do not behave monolithically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Queueing delays in buffered multistage interconnection networks Data dissemination performance in large-scale sensor networks Index policies for a multi-class queue with convex holding cost and abandonments Neighbor-cell assisted error correction for MLC NAND flash memories Collecting, organizing, and sharing pins in pinterest: interest-driven or social-driven?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1