卷积神经网络在医学成像中的应用

M. Finzel
{"title":"卷积神经网络在医学成像中的应用","authors":"M. Finzel","doi":"10.61366/2576-2176.1044","DOIUrl":null,"url":null,"abstract":"Over the past 5 years there has been an increase in the use of convolutional neural networks in a broad variety of medical imaging applications. This is due in part to the increase in their popularity since their success in the 2012 ImageNet competition, but is also due to their adaptabil-ity across a range of medical imaging applications. These applications vary greatly; from the segmentation of knee cartilage to the detection of Alzheimer’s disease in MRIs and much more. In this paper we will go over some of the cutting edge techniques being used specifically for the tasks of brain segmentation; classifying with both binary segmentation on brain lesions and hierarchical segmentation with tumors. The results are proving to be quite promising with many of the described techniques outscoring previous state-of-the-art systems.","PeriodicalId":113813,"journal":{"name":"Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convolutional Neural Networks in Medical Imaging\",\"authors\":\"M. Finzel\",\"doi\":\"10.61366/2576-2176.1044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past 5 years there has been an increase in the use of convolutional neural networks in a broad variety of medical imaging applications. This is due in part to the increase in their popularity since their success in the 2012 ImageNet competition, but is also due to their adaptabil-ity across a range of medical imaging applications. These applications vary greatly; from the segmentation of knee cartilage to the detection of Alzheimer’s disease in MRIs and much more. In this paper we will go over some of the cutting edge techniques being used specifically for the tasks of brain segmentation; classifying with both binary segmentation on brain lesions and hierarchical segmentation with tumors. The results are proving to be quite promising with many of the described techniques outscoring previous state-of-the-art systems.\",\"PeriodicalId\":113813,\"journal\":{\"name\":\"Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61366/2576-2176.1044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61366/2576-2176.1044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在过去的5年中,卷积神经网络在各种医学成像应用中的使用有所增加。这部分是由于它们在2012年ImageNet竞赛中取得成功后越来越受欢迎,但也是由于它们在一系列医学成像应用中的适应性。这些应用差别很大;从膝关节软骨的分割到mri中阿尔茨海默病的检测等等。在本文中,我们将介绍一些专门用于大脑分割任务的尖端技术;脑损伤分类采用二值分割,肿瘤分类采用分层分割。结果被证明是相当有希望的,许多描述的技术超过了以前的最先进的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional Neural Networks in Medical Imaging
Over the past 5 years there has been an increase in the use of convolutional neural networks in a broad variety of medical imaging applications. This is due in part to the increase in their popularity since their success in the 2012 ImageNet competition, but is also due to their adaptabil-ity across a range of medical imaging applications. These applications vary greatly; from the segmentation of knee cartilage to the detection of Alzheimer’s disease in MRIs and much more. In this paper we will go over some of the cutting edge techniques being used specifically for the tasks of brain segmentation; classifying with both binary segmentation on brain lesions and hierarchical segmentation with tumors. The results are proving to be quite promising with many of the described techniques outscoring previous state-of-the-art systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Organizational Communication in the WNBA What Influences Reproductive Rights Policy? State Abortion Restrictions and the Level of State Democracy Point Deductions in World Football: The Issue of Financial Fair Play Music Genre Classification Capabilities of Enhanced Neural Network Architectures MLCP of Red Bull
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1