小熊:多元序列分类使用有界z分数与抽样

A. Richardson, G. Kaminka, Sarit Kraus
{"title":"小熊:多元序列分类使用有界z分数与抽样","authors":"A. Richardson, G. Kaminka, Sarit Kraus","doi":"10.1109/ICDMW.2010.38","DOIUrl":null,"url":null,"abstract":"Multivariate temporal sequence classification is an important and challenging task. Several attempts to address this problem exist, but none provide a full solution. In this paper we present CUBS: Classification Using Bounded Z-Score with Sampling. CUBS uses item set mining to produce frequent subsequences, and then selects among them the statistically significant subsequences to compose a classification model. We introduce an improved item set mining algorithm that solves the short sequence bias present in many item set mining algorithms. Unfortunately, the z-score normalization hinders pruning. We provide a bound on the z-score to address this issue. Calculation of the z-score normalization requires knowledge of some statistical values of the data gathered using a small sample of the database. The sampling causes a distortion in the values. We analyze this distortion and correct it. We evaluate CUBS for accuracy and scalability on a synthetic dataset and on two real world dataset. The results demonstrate how short subsequence bias is solved in the mining, and show how our bound and sampling technique enable speedup.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"CUBS: Multivariate Sequence Classification Using Bounded Z-score with Sampling\",\"authors\":\"A. Richardson, G. Kaminka, Sarit Kraus\",\"doi\":\"10.1109/ICDMW.2010.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate temporal sequence classification is an important and challenging task. Several attempts to address this problem exist, but none provide a full solution. In this paper we present CUBS: Classification Using Bounded Z-Score with Sampling. CUBS uses item set mining to produce frequent subsequences, and then selects among them the statistically significant subsequences to compose a classification model. We introduce an improved item set mining algorithm that solves the short sequence bias present in many item set mining algorithms. Unfortunately, the z-score normalization hinders pruning. We provide a bound on the z-score to address this issue. Calculation of the z-score normalization requires knowledge of some statistical values of the data gathered using a small sample of the database. The sampling causes a distortion in the values. We analyze this distortion and correct it. We evaluate CUBS for accuracy and scalability on a synthetic dataset and on two real world dataset. The results demonstrate how short subsequence bias is solved in the mining, and show how our bound and sampling technique enable speedup.\",\"PeriodicalId\":170201,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining Workshops\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2010.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

多元时间序列分类是一项重要而富有挑战性的任务。解决这个问题的一些尝试已经存在,但是没有一个提供一个完整的解决方案。在本文中,我们提出了小熊:使用有界z分数与抽样的分类。小熊分类算法通过项目集挖掘产生频繁子序列,然后从中选择统计上显著的子序列组成分类模型。提出了一种改进的项目集挖掘算法,解决了许多项目集挖掘算法中存在的短序列偏差。不幸的是,z分数归一化阻碍了修剪。我们提供了z分数的界限来解决这个问题。计算z分数归一化需要了解使用数据库的小样本收集的数据的一些统计值。采样导致值失真。我们分析这种扭曲并加以纠正。我们在一个合成数据集和两个真实数据集上评估了小熊的准确性和可扩展性。结果显示了在挖掘中如何解决短子序列偏差,并显示了我们的定界和采样技术如何实现加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CUBS: Multivariate Sequence Classification Using Bounded Z-score with Sampling
Multivariate temporal sequence classification is an important and challenging task. Several attempts to address this problem exist, but none provide a full solution. In this paper we present CUBS: Classification Using Bounded Z-Score with Sampling. CUBS uses item set mining to produce frequent subsequences, and then selects among them the statistically significant subsequences to compose a classification model. We introduce an improved item set mining algorithm that solves the short sequence bias present in many item set mining algorithms. Unfortunately, the z-score normalization hinders pruning. We provide a bound on the z-score to address this issue. Calculation of the z-score normalization requires knowledge of some statistical values of the data gathered using a small sample of the database. The sampling causes a distortion in the values. We analyze this distortion and correct it. We evaluate CUBS for accuracy and scalability on a synthetic dataset and on two real world dataset. The results demonstrate how short subsequence bias is solved in the mining, and show how our bound and sampling technique enable speedup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Path Integral Inspired Query Sequence Suggestion for User Search Task Simplification PTCR-Miner: Progressive Temporal Class Rule Mining for Multivariate Temporal Data Classification Bridging Folksonomies and Domain Ontologies: Getting Out Non-taxonomic Relations SIMPLE: Interactive Analytics on Patent Data Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1