基于深度密集人工神经网络的财务欺诈报表检测

Georgios S. Temponeras, Stamatios-Aggelos N. Alexandropoulos, S. Kotsiantis, M. Vrahatis
{"title":"基于深度密集人工神经网络的财务欺诈报表检测","authors":"Georgios S. Temponeras, Stamatios-Aggelos N. Alexandropoulos, S. Kotsiantis, M. Vrahatis","doi":"10.1109/IISA.2019.8900741","DOIUrl":null,"url":null,"abstract":"A very important issue in the financial field is to identify and reliably predict Fraudulent Financial Statements (FFS). For this purpose, several Machine Learning models have been developed that identify the issues that are directly related to FFS. In this paper, we present a new predictive model for fraudulent detection through a deep dense artificial neural network. Specifically, a new forecasting model was tested experimentally using data from Greek companies. The obtained results showed that the proposed scheme is robust and promising.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Financial Fraudulent Statements Detection through a Deep Dense Artificial Neural Network\",\"authors\":\"Georgios S. Temponeras, Stamatios-Aggelos N. Alexandropoulos, S. Kotsiantis, M. Vrahatis\",\"doi\":\"10.1109/IISA.2019.8900741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A very important issue in the financial field is to identify and reliably predict Fraudulent Financial Statements (FFS). For this purpose, several Machine Learning models have been developed that identify the issues that are directly related to FFS. In this paper, we present a new predictive model for fraudulent detection through a deep dense artificial neural network. Specifically, a new forecasting model was tested experimentally using data from Greek companies. The obtained results showed that the proposed scheme is robust and promising.\",\"PeriodicalId\":371385,\"journal\":{\"name\":\"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2019.8900741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

识别和可靠地预测虚假财务报表是财务领域一个非常重要的问题。为此,已经开发了几个机器学习模型来识别与FFS直接相关的问题。本文提出了一种基于深度密集人工神经网络的欺诈检测预测模型。具体来说,我们利用希腊公司的数据对一种新的预测模型进行了实验测试。结果表明,该方案具有较好的鲁棒性和应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Financial Fraudulent Statements Detection through a Deep Dense Artificial Neural Network
A very important issue in the financial field is to identify and reliably predict Fraudulent Financial Statements (FFS). For this purpose, several Machine Learning models have been developed that identify the issues that are directly related to FFS. In this paper, we present a new predictive model for fraudulent detection through a deep dense artificial neural network. Specifically, a new forecasting model was tested experimentally using data from Greek companies. The obtained results showed that the proposed scheme is robust and promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A NoSQL Approach for Aspect Mining of Cultural Heritage Streaming Data Advancing Adult Online Education through a SN-Learning Environment Smart educational games and Consent under the scope of General Data Protection Regulation Timetable Scheduling Using a Hybrid Particle Swarm Optimization with Local Search Approach Data Mining for Smart Cities: Predicting Electricity Consumption by Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1