道路场景感知的主动视觉

A. Dankers, N. Barnes, A. Zelinsky
{"title":"道路场景感知的主动视觉","authors":"A. Dankers, N. Barnes, A. Zelinsky","doi":"10.1109/IVS.2005.1505100","DOIUrl":null,"url":null,"abstract":"We present a mapping approach to road scene awareness based on active stereo vision. We generalise traditional static multi-camera rectification techniques to enable active epipolar rectification with a mosaic representation of the output. The approach is used to apply standard static depth mapping and optical flow techniques to the active case. We use the framework to extract the ground plane and segment moving objects in dynamic scenes using arbitrarily moving cameras on a moving vehicle. The approach enables an estimation of the velocity of the vehicle relative to the road, and the velocity of objects in the scene. We provide footage of preliminary results of the system operating in real-time, including dynamic object extraction and tracking, ground plane extraction, and recovery of vehicle velocity.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Active vision for road scene awareness\",\"authors\":\"A. Dankers, N. Barnes, A. Zelinsky\",\"doi\":\"10.1109/IVS.2005.1505100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a mapping approach to road scene awareness based on active stereo vision. We generalise traditional static multi-camera rectification techniques to enable active epipolar rectification with a mosaic representation of the output. The approach is used to apply standard static depth mapping and optical flow techniques to the active case. We use the framework to extract the ground plane and segment moving objects in dynamic scenes using arbitrarily moving cameras on a moving vehicle. The approach enables an estimation of the velocity of the vehicle relative to the road, and the velocity of objects in the scene. We provide footage of preliminary results of the system operating in real-time, including dynamic object extraction and tracking, ground plane extraction, and recovery of vehicle velocity.\",\"PeriodicalId\":386189,\"journal\":{\"name\":\"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2005.1505100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种基于主动立体视觉的道路场景感知映射方法。我们推广了传统的静态多相机整流技术,使有源极极整流与输出的马赛克表示成为可能。该方法用于将标准静态深度映射和光流技术应用于活动情况。我们使用该框架在动态场景中提取地平面,并在移动的车辆上使用任意移动的摄像机来分割运动物体。该方法能够估计车辆相对于道路的速度,以及场景中物体的速度。我们提供了系统实时运行的初步结果,包括动态目标提取和跟踪,地平面提取和车辆速度恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active vision for road scene awareness
We present a mapping approach to road scene awareness based on active stereo vision. We generalise traditional static multi-camera rectification techniques to enable active epipolar rectification with a mosaic representation of the output. The approach is used to apply standard static depth mapping and optical flow techniques to the active case. We use the framework to extract the ground plane and segment moving objects in dynamic scenes using arbitrarily moving cameras on a moving vehicle. The approach enables an estimation of the velocity of the vehicle relative to the road, and the velocity of objects in the scene. We provide footage of preliminary results of the system operating in real-time, including dynamic object extraction and tracking, ground plane extraction, and recovery of vehicle velocity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A statistical based UWB multipath channel model for the indoor environments WPAN applications Visual-based assistance for electric vehicle driving Cooperative driving and lane changing at blind crossings Vehicle localization on a digital map using particles filtering Past, current and future on nonlinear dynamics and noise origins of non-smooth gear transmission dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1