{"title":"working in- progress: NVIDIA GPU在虚拟化环境中的调度细节","authors":"Nicola Capodieci, R. Cavicchioli, M. Bertogna","doi":"10.1109/EMSOFT.2018.8537220","DOIUrl":null,"url":null,"abstract":"Modern automotive grade embedded platforms feature high performance Graphics Processing Units (GPUs) to support the massively parallel processing power needed for next-generation autonomous driving applications. Hence, a GPU scheduling approach with strong Real-Time guarantees is needed. While previous research efforts focused on reverse engineering the GPU ecosystem in order to understand and control GPU scheduling on NVIDIA platforms, we provide an in depth explanation of the NVIDIA standard approach to GPU application scheduling on a Drive PX platform. Then, we discuss how a privileged scheduling server can be used to enforce arbitrary scheduling policies in a virtualized environment.","PeriodicalId":375994,"journal":{"name":"2018 International Conference on Embedded Software (EMSOFT)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Work-in-Progress: NVIDIA GPU Scheduling Details in Virtualized Environments\",\"authors\":\"Nicola Capodieci, R. Cavicchioli, M. Bertogna\",\"doi\":\"10.1109/EMSOFT.2018.8537220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern automotive grade embedded platforms feature high performance Graphics Processing Units (GPUs) to support the massively parallel processing power needed for next-generation autonomous driving applications. Hence, a GPU scheduling approach with strong Real-Time guarantees is needed. While previous research efforts focused on reverse engineering the GPU ecosystem in order to understand and control GPU scheduling on NVIDIA platforms, we provide an in depth explanation of the NVIDIA standard approach to GPU application scheduling on a Drive PX platform. Then, we discuss how a privileged scheduling server can be used to enforce arbitrary scheduling policies in a virtualized environment.\",\"PeriodicalId\":375994,\"journal\":{\"name\":\"2018 International Conference on Embedded Software (EMSOFT)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Embedded Software (EMSOFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMSOFT.2018.8537220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT.2018.8537220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Work-in-Progress: NVIDIA GPU Scheduling Details in Virtualized Environments
Modern automotive grade embedded platforms feature high performance Graphics Processing Units (GPUs) to support the massively parallel processing power needed for next-generation autonomous driving applications. Hence, a GPU scheduling approach with strong Real-Time guarantees is needed. While previous research efforts focused on reverse engineering the GPU ecosystem in order to understand and control GPU scheduling on NVIDIA platforms, we provide an in depth explanation of the NVIDIA standard approach to GPU application scheduling on a Drive PX platform. Then, we discuss how a privileged scheduling server can be used to enforce arbitrary scheduling policies in a virtualized environment.