Ruicong Chen, H. Kung, A. Chandrakasan, Hae-Seung Lee
{"title":"一个位级稀疏感知SAR ADC,用于AIoT应用的签名表达式的直接混合编码","authors":"Ruicong Chen, H. Kung, A. Chandrakasan, Hae-Seung Lee","doi":"10.1145/3531437.3539700","DOIUrl":null,"url":null,"abstract":"In this work, we propose the first bit-level sparsity-aware SAR ADC with direct hybrid encoding for signed expressions (HESE) for AIoT applications. ADCs are typically a bottleneck in reducing the energy consumption of analog neural networks (ANNs). For a pre-trained Convolutional Neural Network (CNN) inference, a HESE SAR for an ANN can reduce the number of non-zero signed digit terms to be output, and thus enables a reduction in energy along with the term quantization (TQ). The proposed SAR ADC directly produces the HESE signed-digit representation (SDR) using two thresholds per cycle for 2-bit look-ahead (LA). A prototype in 65nm shows that the HESE SAR provides sparsity encoding with a Walden FoM of 15.2fJ/conv.-step at 45MS/s. The core area is 0.072mm2.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bit-level Sparsity-aware SAR ADC with Direct Hybrid Encoding for Signed Expressions for AIoT Applications\",\"authors\":\"Ruicong Chen, H. Kung, A. Chandrakasan, Hae-Seung Lee\",\"doi\":\"10.1145/3531437.3539700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose the first bit-level sparsity-aware SAR ADC with direct hybrid encoding for signed expressions (HESE) for AIoT applications. ADCs are typically a bottleneck in reducing the energy consumption of analog neural networks (ANNs). For a pre-trained Convolutional Neural Network (CNN) inference, a HESE SAR for an ANN can reduce the number of non-zero signed digit terms to be output, and thus enables a reduction in energy along with the term quantization (TQ). The proposed SAR ADC directly produces the HESE signed-digit representation (SDR) using two thresholds per cycle for 2-bit look-ahead (LA). A prototype in 65nm shows that the HESE SAR provides sparsity encoding with a Walden FoM of 15.2fJ/conv.-step at 45MS/s. The core area is 0.072mm2.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531437.3539700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Bit-level Sparsity-aware SAR ADC with Direct Hybrid Encoding for Signed Expressions for AIoT Applications
In this work, we propose the first bit-level sparsity-aware SAR ADC with direct hybrid encoding for signed expressions (HESE) for AIoT applications. ADCs are typically a bottleneck in reducing the energy consumption of analog neural networks (ANNs). For a pre-trained Convolutional Neural Network (CNN) inference, a HESE SAR for an ANN can reduce the number of non-zero signed digit terms to be output, and thus enables a reduction in energy along with the term quantization (TQ). The proposed SAR ADC directly produces the HESE signed-digit representation (SDR) using two thresholds per cycle for 2-bit look-ahead (LA). A prototype in 65nm shows that the HESE SAR provides sparsity encoding with a Walden FoM of 15.2fJ/conv.-step at 45MS/s. The core area is 0.072mm2.