RUSH:混合数据中心网络的路由和调度

K. Han, Zhiming Hu, Jun Luo, Liu Xiang
{"title":"RUSH:混合数据中心网络的路由和调度","authors":"K. Han, Zhiming Hu, Jun Luo, Liu Xiang","doi":"10.1109/INFOCOM.2015.7218407","DOIUrl":null,"url":null,"abstract":"The recent development of 60GHz technology has made hybrid Data Center Networks (hybrid DCNs) possible, i.e., augmenting wired DCNs with highly directional 60GHz wireless links to provide flexible network connectivity. Although a few recent proposals have demonstrated the feasibility of this hybrid design, it still remains an open problem how to route DCN traffics with guaranteed performance under a hybrid DCN environment. In this paper, we make the first attempt to tackle this challenge, and propose the RUSH framework to minimize the network congestion in hybrid DCNs, by jointly routing flows and scheduling wireless (directional) antennas. Though the problem is shown to be NP-hard, the RUSH algorithms offer guaranteed performance bounds. Our algorithms are able to handle both batched arrivals and sequential arrivals of flow demands, and the theoretical analysis shows that they achieve competitive ratios of O(log n), where n is the number of switches in the network. We also conduct extensive simulations using ns-3 to verify the effectiveness of RUSH. The results demonstrate that RUSH produces nearly optimal performance and significantly outperforms the current practice and a simple greedy heuristics.","PeriodicalId":342583,"journal":{"name":"2015 IEEE Conference on Computer Communications (INFOCOM)","volume":"7 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"RUSH: Routing and scheduling for hybrid data center networks\",\"authors\":\"K. Han, Zhiming Hu, Jun Luo, Liu Xiang\",\"doi\":\"10.1109/INFOCOM.2015.7218407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent development of 60GHz technology has made hybrid Data Center Networks (hybrid DCNs) possible, i.e., augmenting wired DCNs with highly directional 60GHz wireless links to provide flexible network connectivity. Although a few recent proposals have demonstrated the feasibility of this hybrid design, it still remains an open problem how to route DCN traffics with guaranteed performance under a hybrid DCN environment. In this paper, we make the first attempt to tackle this challenge, and propose the RUSH framework to minimize the network congestion in hybrid DCNs, by jointly routing flows and scheduling wireless (directional) antennas. Though the problem is shown to be NP-hard, the RUSH algorithms offer guaranteed performance bounds. Our algorithms are able to handle both batched arrivals and sequential arrivals of flow demands, and the theoretical analysis shows that they achieve competitive ratios of O(log n), where n is the number of switches in the network. We also conduct extensive simulations using ns-3 to verify the effectiveness of RUSH. The results demonstrate that RUSH produces nearly optimal performance and significantly outperforms the current practice and a simple greedy heuristics.\",\"PeriodicalId\":342583,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"volume\":\"7 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2015.7218407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Communications (INFOCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2015.7218407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

60GHz技术的最新发展使混合数据中心网络(hybrid dcn)成为可能,即通过高度定向的60GHz无线链路增强有线dcn,以提供灵活的网络连接。虽然最近的一些建议已经证明了这种混合设计的可行性,但如何在混合DCN环境下保证性能的DCN流量路由仍然是一个悬而未决的问题。在本文中,我们首次尝试解决这一挑战,并提出了RUSH框架,通过联合路由流和调度无线(定向)天线来最小化混合dcn中的网络拥塞。虽然这个问题被证明是np困难的,但RUSH算法提供了有保证的性能界限。我们的算法能够处理批量到达和顺序到达的流需求,理论分析表明,它们实现了O(log n)的竞争比,其中n是网络中的交换机数量。我们还使用ns-3进行了大量模拟,以验证RUSH的有效性。结果表明,RUSH产生了近乎最优的性能,并且显著优于当前的实践和简单的贪婪启发式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RUSH: Routing and scheduling for hybrid data center networks
The recent development of 60GHz technology has made hybrid Data Center Networks (hybrid DCNs) possible, i.e., augmenting wired DCNs with highly directional 60GHz wireless links to provide flexible network connectivity. Although a few recent proposals have demonstrated the feasibility of this hybrid design, it still remains an open problem how to route DCN traffics with guaranteed performance under a hybrid DCN environment. In this paper, we make the first attempt to tackle this challenge, and propose the RUSH framework to minimize the network congestion in hybrid DCNs, by jointly routing flows and scheduling wireless (directional) antennas. Though the problem is shown to be NP-hard, the RUSH algorithms offer guaranteed performance bounds. Our algorithms are able to handle both batched arrivals and sequential arrivals of flow demands, and the theoretical analysis shows that they achieve competitive ratios of O(log n), where n is the number of switches in the network. We also conduct extensive simulations using ns-3 to verify the effectiveness of RUSH. The results demonstrate that RUSH produces nearly optimal performance and significantly outperforms the current practice and a simple greedy heuristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ambient rendezvous: Energy-efficient neighbor discovery via acoustic sensing A-DCF: Design and implementation of delay and queue length based wireless MAC Original SYN: Finding machines hidden behind firewalls Supporting WiFi and LTE co-existence MadeCR: Correlation-based malware detection for cognitive radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1