高效并行减少gpu与Hipacc

Bo Qiao, Oliver Reiche, M. A. Özkan, J. Teich, Frank Hannig
{"title":"高效并行减少gpu与Hipacc","authors":"Bo Qiao, Oliver Reiche, M. A. Özkan, J. Teich, Frank Hannig","doi":"10.1145/3378678.3391885","DOIUrl":null,"url":null,"abstract":"Hipacc is a domain-specific language for ease of programming image processing applications on hardware accelerators such as GPUs. It relieves the burden of manually porting algorithms to hardware for developers with the help of domain- and architecture-specific knowledge. One fundamental operation in image processing is reduction. Global reduction operators are the building blocks of many widely used algorithms, including image normalization, similarity estimation, etc. This paper presents an efficient approach to perform parallel reductions on GPUs with Hipacc. Our proposed approach benefits from the continuous effort of performance and programmability improvement by hardware vendors, for example, by utilizing the latest low-level primitives from Nvidia. Results show our approach achieves a speedup of up to 3.43 over an existing Hipacc implementation with traditional optimization methods, and a speedup of up to 9.02 over an implementation using the Thrust library from Nvidia.","PeriodicalId":383191,"journal":{"name":"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient parallel reduction on GPUs with Hipacc\",\"authors\":\"Bo Qiao, Oliver Reiche, M. A. Özkan, J. Teich, Frank Hannig\",\"doi\":\"10.1145/3378678.3391885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hipacc is a domain-specific language for ease of programming image processing applications on hardware accelerators such as GPUs. It relieves the burden of manually porting algorithms to hardware for developers with the help of domain- and architecture-specific knowledge. One fundamental operation in image processing is reduction. Global reduction operators are the building blocks of many widely used algorithms, including image normalization, similarity estimation, etc. This paper presents an efficient approach to perform parallel reductions on GPUs with Hipacc. Our proposed approach benefits from the continuous effort of performance and programmability improvement by hardware vendors, for example, by utilizing the latest low-level primitives from Nvidia. Results show our approach achieves a speedup of up to 3.43 over an existing Hipacc implementation with traditional optimization methods, and a speedup of up to 9.02 over an implementation using the Thrust library from Nvidia.\",\"PeriodicalId\":383191,\"journal\":{\"name\":\"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3378678.3391885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378678.3391885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

hipac是一种特定于领域的语言,便于在gpu等硬件加速器上编写图像处理应用程序。借助特定于领域和体系结构的知识,它减轻了开发人员手动将算法移植到硬件的负担。图像处理中的一个基本操作是还原。全局约简算子是许多广泛使用的算法的组成部分,包括图像归一化、相似度估计等。本文提出了一种利用Hipacc在gpu上进行并行缩减的有效方法。我们提出的方法得益于硬件供应商对性能和可编程性改进的持续努力,例如,通过利用Nvidia最新的低级原语。结果表明,我们的方法比使用传统优化方法的现有hipac实现实现的速度提高了3.43,比使用Nvidia的Thrust库实现的速度提高了9.02。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient parallel reduction on GPUs with Hipacc
Hipacc is a domain-specific language for ease of programming image processing applications on hardware accelerators such as GPUs. It relieves the burden of manually porting algorithms to hardware for developers with the help of domain- and architecture-specific knowledge. One fundamental operation in image processing is reduction. Global reduction operators are the building blocks of many widely used algorithms, including image normalization, similarity estimation, etc. This paper presents an efficient approach to perform parallel reductions on GPUs with Hipacc. Our proposed approach benefits from the continuous effort of performance and programmability improvement by hardware vendors, for example, by utilizing the latest low-level primitives from Nvidia. Results show our approach achieves a speedup of up to 3.43 over an existing Hipacc implementation with traditional optimization methods, and a speedup of up to 9.02 over an implementation using the Thrust library from Nvidia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A secure hardware-software solution based on RISC-V, logic locking and microkernel Configuring loosely time-triggered wireless control software Analog implementation of arithmetic operations on real memristors Programming tensor cores from an image processing DSL Data-layout optimization based on memory-access-pattern analysis for source-code performance improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1