OFDM调制物理层网络编码的Turbo均衡

Jie Huang, Zhaohui Wang, Shengli Zhou, Zhengdao Wang
{"title":"OFDM调制物理层网络编码的Turbo均衡","authors":"Jie Huang, Zhaohui Wang, Shengli Zhou, Zhengdao Wang","doi":"10.1109/SPAWC.2011.5990415","DOIUrl":null,"url":null,"abstract":"In this paper we consider a practical orthogonal frequency division multiplexing (OFDM) modulated and low-density parity-check (LDPC) channel coded two-way relay system employing physical-layer network coding (PLNC), where two terminals A and B desire to exchange information with each other with the help of a relay R which can be equipped with multiple receive antennas. Orthogonal frequency division multiplexing (OFDM) is adopted as the modulation scheme to resolve the synchronization problem in PLNC and doubly selective channels with intercarrier interference (ICI) are considered. The critical process in such a system is the calculation of the network-coded transmit codeword at the relay on basis of the superimposed channel-coded signals of the two terminals. Different from existing works on non-iterative receiver design, we here consider iterative receiver design. We propose two turbo equalization receivers, one is the conventional iterative separate detection and decoding (I-SDD), and the other one is based on a recently developed estimation scheme for PLNC. Gaussian message passing (GMP) and sum-product algorithm (SPA) are used for ICI-aware equalization and channel decoding respectively. We find through numerical simulations that the performance of the I-SDD receiver can catch up with that of the state-of-the-art PLNC-based receiver when more than one receive antennas are used. One promising feature about the ISDD receiver is that the channel decoding complexity is much lower than that of the PLNC-based receiver.","PeriodicalId":102244,"journal":{"name":"2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Turbo equalization for OFDM modulated physical layer network coding\",\"authors\":\"Jie Huang, Zhaohui Wang, Shengli Zhou, Zhengdao Wang\",\"doi\":\"10.1109/SPAWC.2011.5990415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider a practical orthogonal frequency division multiplexing (OFDM) modulated and low-density parity-check (LDPC) channel coded two-way relay system employing physical-layer network coding (PLNC), where two terminals A and B desire to exchange information with each other with the help of a relay R which can be equipped with multiple receive antennas. Orthogonal frequency division multiplexing (OFDM) is adopted as the modulation scheme to resolve the synchronization problem in PLNC and doubly selective channels with intercarrier interference (ICI) are considered. The critical process in such a system is the calculation of the network-coded transmit codeword at the relay on basis of the superimposed channel-coded signals of the two terminals. Different from existing works on non-iterative receiver design, we here consider iterative receiver design. We propose two turbo equalization receivers, one is the conventional iterative separate detection and decoding (I-SDD), and the other one is based on a recently developed estimation scheme for PLNC. Gaussian message passing (GMP) and sum-product algorithm (SPA) are used for ICI-aware equalization and channel decoding respectively. We find through numerical simulations that the performance of the I-SDD receiver can catch up with that of the state-of-the-art PLNC-based receiver when more than one receive antennas are used. One promising feature about the ISDD receiver is that the channel decoding complexity is much lower than that of the PLNC-based receiver.\",\"PeriodicalId\":102244,\"journal\":{\"name\":\"2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2011.5990415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2011.5990415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文考虑了一种实用的正交频分复用(OFDM)调制和低密度校验(LDPC)信道编码双向中继系统,该系统采用物理层网络编码(PLNC),其中两个终端a和B希望借助可配置多个接收天线的中继R相互交换信息。采用正交频分复用(OFDM)作为调制方案来解决PLNC中的同步问题,并考虑了载波间干扰(ICI)的双选择信道。该系统的关键过程是根据两个终端的信道编码信号叠加计算中继处的网络编码发送码字。与已有的非迭代接收机设计不同,本文考虑的是迭代接收机设计。我们提出了两种turbo均衡接收器,一种是传统的迭代分离检测和解码(I-SDD),另一种是基于最近开发的PLNC估计方案。分别采用高斯消息传递(GMP)和和积算法(SPA)实现ici感知均衡和信道解码。我们通过数值模拟发现,当使用多个接收天线时,I-SDD接收器的性能可以赶上最先进的基于plnc的接收器。ISDD接收机的一个很有前途的特点是其信道解码复杂度远低于基于plnc的接收机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Turbo equalization for OFDM modulated physical layer network coding
In this paper we consider a practical orthogonal frequency division multiplexing (OFDM) modulated and low-density parity-check (LDPC) channel coded two-way relay system employing physical-layer network coding (PLNC), where two terminals A and B desire to exchange information with each other with the help of a relay R which can be equipped with multiple receive antennas. Orthogonal frequency division multiplexing (OFDM) is adopted as the modulation scheme to resolve the synchronization problem in PLNC and doubly selective channels with intercarrier interference (ICI) are considered. The critical process in such a system is the calculation of the network-coded transmit codeword at the relay on basis of the superimposed channel-coded signals of the two terminals. Different from existing works on non-iterative receiver design, we here consider iterative receiver design. We propose two turbo equalization receivers, one is the conventional iterative separate detection and decoding (I-SDD), and the other one is based on a recently developed estimation scheme for PLNC. Gaussian message passing (GMP) and sum-product algorithm (SPA) are used for ICI-aware equalization and channel decoding respectively. We find through numerical simulations that the performance of the I-SDD receiver can catch up with that of the state-of-the-art PLNC-based receiver when more than one receive antennas are used. One promising feature about the ISDD receiver is that the channel decoding complexity is much lower than that of the PLNC-based receiver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resource allocation for downlink two-user OFDMA systems with wireless network coding Robust distributed positioning algorithms for cooperative networks Maximum-likelihood channel estimation in block fading amplify-and-forward relaying networks A lowcomplexity subspace based decoding algorithm for real BCH DFT codes Analytical performance of OFDM radio link under RX I/Q imbalance and frequency-selective Rayleigh fading channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1