基于支持向量机的降雨预测非线性组合模型

Kesheng Lu, Lingzhi Wang
{"title":"基于支持向量机的降雨预测非线性组合模型","authors":"Kesheng Lu, Lingzhi Wang","doi":"10.1109/CSO.2011.50","DOIUrl":null,"url":null,"abstract":"In this study, a novel modular-type Support Vector Machine (SVM) is presented to simulate rainfall prediction. First of all, a bagging sampling technique is used to generate different training sets. Secondly, different kernel function of SVM with different parameters, i.e., base models, are then trained to formulate different regression based on the different training sets. Thirdly, the Partial Least Square (PLS) technology is used to select choose the appropriate number of SVR combination members. Finally, a $\\nu$-SVM can be produced by learning from all base models. The technique will be implemented to forecast monthly rainfall in the Guangxi, China. Empirical results show that the prediction by using the SVM combination model is generally better than those obtained using other models presented in this study in terms of the same evaluation measurements. Our findings reveal that the nonlinear ensemble model proposed here can be used as an alternative forecasting tool for a Meteorological application in achieving greater forecasting accuracy and improving prediction quality further.","PeriodicalId":210815,"journal":{"name":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"A Novel Nonlinear Combination Model Based on Support Vector Machine for Rainfall Prediction\",\"authors\":\"Kesheng Lu, Lingzhi Wang\",\"doi\":\"10.1109/CSO.2011.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a novel modular-type Support Vector Machine (SVM) is presented to simulate rainfall prediction. First of all, a bagging sampling technique is used to generate different training sets. Secondly, different kernel function of SVM with different parameters, i.e., base models, are then trained to formulate different regression based on the different training sets. Thirdly, the Partial Least Square (PLS) technology is used to select choose the appropriate number of SVR combination members. Finally, a $\\\\nu$-SVM can be produced by learning from all base models. The technique will be implemented to forecast monthly rainfall in the Guangxi, China. Empirical results show that the prediction by using the SVM combination model is generally better than those obtained using other models presented in this study in terms of the same evaluation measurements. Our findings reveal that the nonlinear ensemble model proposed here can be used as an alternative forecasting tool for a Meteorological application in achieving greater forecasting accuracy and improving prediction quality further.\",\"PeriodicalId\":210815,\"journal\":{\"name\":\"2011 Fourth International Joint Conference on Computational Sciences and Optimization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Joint Conference on Computational Sciences and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2011.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2011.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

本文提出了一种新的模块化支持向量机(SVM)来模拟降雨预报。首先,采用套袋抽样技术生成不同的训练集。其次,训练具有不同参数的支持向量机的不同核函数,即基模型,根据不同的训练集进行不同的回归。第三,利用偏最小二乘(PLS)技术选择合适数量的SVR组合成员。最后,从所有基础模型中学习得到$\nu$-SVM。该技术将用于预测中国广西的月降雨量。实证结果表明,在相同的评价测度下,使用SVM组合模型的预测结果普遍优于本文其他模型的预测结果。我们的研究结果表明,本文提出的非线性集合模型可以作为气象应用的一种替代预测工具,以实现更高的预测精度和进一步提高预测质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Nonlinear Combination Model Based on Support Vector Machine for Rainfall Prediction
In this study, a novel modular-type Support Vector Machine (SVM) is presented to simulate rainfall prediction. First of all, a bagging sampling technique is used to generate different training sets. Secondly, different kernel function of SVM with different parameters, i.e., base models, are then trained to formulate different regression based on the different training sets. Thirdly, the Partial Least Square (PLS) technology is used to select choose the appropriate number of SVR combination members. Finally, a $\nu$-SVM can be produced by learning from all base models. The technique will be implemented to forecast monthly rainfall in the Guangxi, China. Empirical results show that the prediction by using the SVM combination model is generally better than those obtained using other models presented in this study in terms of the same evaluation measurements. Our findings reveal that the nonlinear ensemble model proposed here can be used as an alternative forecasting tool for a Meteorological application in achieving greater forecasting accuracy and improving prediction quality further.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Inverse Eigenvalue Problem for a Special Kind of Matrices A Nonlinear Artificial Intelligence Ensemble Prediction Model Based on EOF for Typhoon Track Product Review Information Extraction Based on Adjective Opinion Words The Design and Implement of Meteorological Service Benefit Assessment for Huaihe River Basin with GIS Technology The Effects of Interest Rate Regulation on Real Estate Prices in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1