贝叶斯非参数模型描述了竞争动态博弈中的社会敏感性

Kelsey R. McDonald, S. Huettel, John M. Pearson
{"title":"贝叶斯非参数模型描述了竞争动态博弈中的社会敏感性","authors":"Kelsey R. McDonald, S. Huettel, John M. Pearson","doi":"10.32470/ccn.2019.1303-0","DOIUrl":null,"url":null,"abstract":"Previous studies of strategic social interaction in game theory have predominantly used games with clearlydefined turns and limited choices. Yet, most real-world social behaviors involve dynamic, coevolving decisions by interacting agents, which poses challenges for creating tractable models of behavior. We have previously shown that it is possible to quantify the instantaneous dynamic coupling in strategic human game play when paired against both human and artificial opponents. Here, we apply this coupling model to human neuroimaging data. We observe that the rTPJ and dmPFC exhibit increased activation when playing against a human opponent compared to a computer opponent, both immediately before and after game play. Moreover, a network of regions frequently associated with social cognition, including the dlPFC and dmPFC, was found to correlate with player coupling metrics derived from our model for both human and computer opponents. These findings suggest that prefrontal cortex may play a role in tracking the relationship between oneself and other dynamic agents, regardless of whether those agents are perceived to be human.","PeriodicalId":281121,"journal":{"name":"2019 Conference on Cognitive Computational Neuroscience","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian nonparametric models characterize social sensitivity in a competitive dynamic game\",\"authors\":\"Kelsey R. McDonald, S. Huettel, John M. Pearson\",\"doi\":\"10.32470/ccn.2019.1303-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies of strategic social interaction in game theory have predominantly used games with clearlydefined turns and limited choices. Yet, most real-world social behaviors involve dynamic, coevolving decisions by interacting agents, which poses challenges for creating tractable models of behavior. We have previously shown that it is possible to quantify the instantaneous dynamic coupling in strategic human game play when paired against both human and artificial opponents. Here, we apply this coupling model to human neuroimaging data. We observe that the rTPJ and dmPFC exhibit increased activation when playing against a human opponent compared to a computer opponent, both immediately before and after game play. Moreover, a network of regions frequently associated with social cognition, including the dlPFC and dmPFC, was found to correlate with player coupling metrics derived from our model for both human and computer opponents. These findings suggest that prefrontal cortex may play a role in tracking the relationship between oneself and other dynamic agents, regardless of whether those agents are perceived to be human.\",\"PeriodicalId\":281121,\"journal\":{\"name\":\"2019 Conference on Cognitive Computational Neuroscience\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Cognitive Computational Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32470/ccn.2019.1303-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Cognitive Computational Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32470/ccn.2019.1303-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先前对博弈论中策略社会互动的研究主要使用具有明确回合和有限选择的游戏。然而,大多数现实世界的社会行为涉及相互作用的代理的动态、共同进化的决策,这对创建可处理的行为模型提出了挑战。我们之前已经证明,当与人类和人工对手配对时,有可能量化战略人类游戏中的瞬时动态耦合。在这里,我们将这种耦合模型应用于人类神经成像数据。我们观察到rTPJ和dmPFC在与人类对手比赛时比与计算机对手比赛时表现出更高的激活,无论是在比赛之前还是之后。此外,与社会认知相关的区域网络,包括dlPFC和dmPFC,被发现与我们的人类和计算机对手模型得出的玩家耦合指标相关。这些发现表明,前额叶皮层可能在追踪自己和其他动态动因之间的关系方面发挥作用,而不管这些动因是否被认为是人类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian nonparametric models characterize social sensitivity in a competitive dynamic game
Previous studies of strategic social interaction in game theory have predominantly used games with clearlydefined turns and limited choices. Yet, most real-world social behaviors involve dynamic, coevolving decisions by interacting agents, which poses challenges for creating tractable models of behavior. We have previously shown that it is possible to quantify the instantaneous dynamic coupling in strategic human game play when paired against both human and artificial opponents. Here, we apply this coupling model to human neuroimaging data. We observe that the rTPJ and dmPFC exhibit increased activation when playing against a human opponent compared to a computer opponent, both immediately before and after game play. Moreover, a network of regions frequently associated with social cognition, including the dlPFC and dmPFC, was found to correlate with player coupling metrics derived from our model for both human and computer opponents. These findings suggest that prefrontal cortex may play a role in tracking the relationship between oneself and other dynamic agents, regardless of whether those agents are perceived to be human.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narratives as Networks: Predicting Memory from the Structure of Naturalistic Events Subtractive gating improves generalization in working memory tasks Do LSTMs know about Principle C? Unfolding of multisensory inference in the brain and behavior Adversarial Training of Neural Encoding Models on Population Spike Trains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1