通用句子编码器在员工数据语义搜索中的应用

Divyam Sheth, A. R. Gupta, L. D'mello
{"title":"通用句子编码器在员工数据语义搜索中的应用","authors":"Divyam Sheth, A. R. Gupta, L. D'mello","doi":"10.1109/iccica52458.2021.9697114","DOIUrl":null,"url":null,"abstract":"This paper describes an application that performs a semantic search on an employee database. It helps Human Resources employees to target relevant people for their events and trainings. Syntactic or lexical searching involves keyword matching but does not match synonyms and other contextually related data. By using regular keyword search, a document either contains the given word or not, and there is no middle ground. Semantic Search allows the matching of data contextually linked with the search term. High dimensional vectors, also known as embeddings, are generated for a complete sentence and are then used for searching. Under the hood, Google’s Universal Sentence Encoder. The Universal Sentence Encoder encodes text into high dimensional vectors that can be used for text classification, semantic similarity, clustering, and other natural language tasks to provide better performance of the model as compared to a custom trained Convolution Neural Network which also requires more training data.","PeriodicalId":327193,"journal":{"name":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Universal Sentence Encoder for Semantic Search of Employee Data\",\"authors\":\"Divyam Sheth, A. R. Gupta, L. D'mello\",\"doi\":\"10.1109/iccica52458.2021.9697114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an application that performs a semantic search on an employee database. It helps Human Resources employees to target relevant people for their events and trainings. Syntactic or lexical searching involves keyword matching but does not match synonyms and other contextually related data. By using regular keyword search, a document either contains the given word or not, and there is no middle ground. Semantic Search allows the matching of data contextually linked with the search term. High dimensional vectors, also known as embeddings, are generated for a complete sentence and are then used for searching. Under the hood, Google’s Universal Sentence Encoder. The Universal Sentence Encoder encodes text into high dimensional vectors that can be used for text classification, semantic similarity, clustering, and other natural language tasks to provide better performance of the model as compared to a custom trained Convolution Neural Network which also requires more training data.\",\"PeriodicalId\":327193,\"journal\":{\"name\":\"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccica52458.2021.9697114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccica52458.2021.9697114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一个在员工数据库上执行语义搜索的应用程序。它可以帮助人力资源员工为他们的活动和培训找到相关的人。语法或词法搜索涉及关键字匹配,但不匹配同义词和其他与上下文相关的数据。通过使用常规关键字搜索,文档要么包含给定的单词,要么不包含给定的单词,没有中间地带。语义搜索允许匹配与搜索词上下文链接的数据。高维向量,也称为嵌入,是为一个完整的句子生成的,然后用于搜索。在引擎盖下,谷歌的通用句子编码器。通用句子编码器将文本编码为高维向量,可用于文本分类、语义相似性、聚类和其他自然语言任务,与需要更多训练数据的自定义训练卷积神经网络相比,提供更好的模型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Universal Sentence Encoder for Semantic Search of Employee Data
This paper describes an application that performs a semantic search on an employee database. It helps Human Resources employees to target relevant people for their events and trainings. Syntactic or lexical searching involves keyword matching but does not match synonyms and other contextually related data. By using regular keyword search, a document either contains the given word or not, and there is no middle ground. Semantic Search allows the matching of data contextually linked with the search term. High dimensional vectors, also known as embeddings, are generated for a complete sentence and are then used for searching. Under the hood, Google’s Universal Sentence Encoder. The Universal Sentence Encoder encodes text into high dimensional vectors that can be used for text classification, semantic similarity, clustering, and other natural language tasks to provide better performance of the model as compared to a custom trained Convolution Neural Network which also requires more training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Body Sensors for Implementation of Human Activity Recognition Performance Prediction of Product/Person Using Real Time Twitter Tweets Survey on Centric Data Protection Method for Cloud Storage Application Twitter Sentiment Analysis using Natural Language Processing Crime Visualization using A Novel GIS-Based Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1