连续控制任务的集中协同探索策略

C. Li, Chen Gong, Qiang He, Xinwen Hou, Yu Liu
{"title":"连续控制任务的集中协同探索策略","authors":"C. Li, Chen Gong, Qiang He, Xinwen Hou, Yu Liu","doi":"10.48550/arXiv.2301.02375","DOIUrl":null,"url":null,"abstract":"The deep reinforcement learning (DRL) algorithm works brilliantly on solving various complex control tasks. This phenomenal success can be partly attributed to DRL encouraging intelligent agents to sufficiently explore the environment and collect diverse experiences during the agent training process. Therefore, exploration plays a significant role in accessing an optimal policy for DRL. Despite recent works making great progress in continuous control tasks, exploration in these tasks has remained insufficiently investigated. To explicitly encourage exploration in continuous control tasks, we propose CCEP (Centralized Cooperative Exploration Policy), which utilizes underestimation and overestimation of value functions to maintain the capacity of exploration. CCEP first keeps two value functions initialized with different parameters, and generates diverse policies with multiple exploration styles from a pair of value functions. In addition, a centralized policy framework ensures that CCEP achieves message delivery between multiple policies, furthermore contributing to exploring the environment cooperatively. Extensive experimental results demonstrate that CCEP achieves higher exploration capacity. Empirical analysis shows diverse exploration styles in the learned policies by CCEP, reaping benefits in more exploration regions. And this exploration capacity of CCEP ensures it outperforms the current state-of-the-art methods across multiple continuous control tasks shown in experiments.","PeriodicalId":326727,"journal":{"name":"Adaptive Agents and Multi-Agent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Centralized Cooperative Exploration Policy for Continuous Control Tasks\",\"authors\":\"C. Li, Chen Gong, Qiang He, Xinwen Hou, Yu Liu\",\"doi\":\"10.48550/arXiv.2301.02375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deep reinforcement learning (DRL) algorithm works brilliantly on solving various complex control tasks. This phenomenal success can be partly attributed to DRL encouraging intelligent agents to sufficiently explore the environment and collect diverse experiences during the agent training process. Therefore, exploration plays a significant role in accessing an optimal policy for DRL. Despite recent works making great progress in continuous control tasks, exploration in these tasks has remained insufficiently investigated. To explicitly encourage exploration in continuous control tasks, we propose CCEP (Centralized Cooperative Exploration Policy), which utilizes underestimation and overestimation of value functions to maintain the capacity of exploration. CCEP first keeps two value functions initialized with different parameters, and generates diverse policies with multiple exploration styles from a pair of value functions. In addition, a centralized policy framework ensures that CCEP achieves message delivery between multiple policies, furthermore contributing to exploring the environment cooperatively. Extensive experimental results demonstrate that CCEP achieves higher exploration capacity. Empirical analysis shows diverse exploration styles in the learned policies by CCEP, reaping benefits in more exploration regions. And this exploration capacity of CCEP ensures it outperforms the current state-of-the-art methods across multiple continuous control tasks shown in experiments.\",\"PeriodicalId\":326727,\"journal\":{\"name\":\"Adaptive Agents and Multi-Agent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adaptive Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2301.02375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Agents and Multi-Agent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.02375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度强化学习(DRL)算法在解决各种复杂的控制任务方面表现出色。这种显著的成功可以部分归因于DRL鼓励智能代理在代理训练过程中充分探索环境并收集不同的经验。因此,探索对于获取最优DRL策略起着重要的作用。尽管最近的工作在连续控制任务方面取得了很大进展,但对这些任务的探索仍然没有得到充分的研究。为了明确鼓励在连续控制任务中的探索,我们提出了CCEP(集中式合作探索策略),该策略利用低估和高估价值函数来维持探索能力。CCEP首先保持两个初始化参数不同的值函数,并从一对值函数中生成具有多种探索风格的多种策略。此外,集中式策略框架确保CCEP实现多个策略之间的消息传递,进一步有助于协作地探索环境。大量的实验结果表明,CCEP具有较高的勘探能力。实证分析表明,CCEP学习的勘探方式多种多样,在更多的勘探区域受益。CCEP的这种探索能力确保它在实验中显示的多个连续控制任务中优于当前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Centralized Cooperative Exploration Policy for Continuous Control Tasks
The deep reinforcement learning (DRL) algorithm works brilliantly on solving various complex control tasks. This phenomenal success can be partly attributed to DRL encouraging intelligent agents to sufficiently explore the environment and collect diverse experiences during the agent training process. Therefore, exploration plays a significant role in accessing an optimal policy for DRL. Despite recent works making great progress in continuous control tasks, exploration in these tasks has remained insufficiently investigated. To explicitly encourage exploration in continuous control tasks, we propose CCEP (Centralized Cooperative Exploration Policy), which utilizes underestimation and overestimation of value functions to maintain the capacity of exploration. CCEP first keeps two value functions initialized with different parameters, and generates diverse policies with multiple exploration styles from a pair of value functions. In addition, a centralized policy framework ensures that CCEP achieves message delivery between multiple policies, furthermore contributing to exploring the environment cooperatively. Extensive experimental results demonstrate that CCEP achieves higher exploration capacity. Empirical analysis shows diverse exploration styles in the learned policies by CCEP, reaping benefits in more exploration regions. And this exploration capacity of CCEP ensures it outperforms the current state-of-the-art methods across multiple continuous control tasks shown in experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering Consistent Subelections Strategic Cost Selection in Participatory Budgeting Minimizing State Exploration While Searching Graphs with Unknown Obstacles vMFER: von Mises-Fisher Experience Resampling Based on Uncertainty of Gradient Directions for Policy Improvement of Actor-Critic Algorithms Reinforcement Nash Equilibrium Solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1