ElastiFace:匹配和混合纹理面

E. Zell, M. Botsch
{"title":"ElastiFace:匹配和混合纹理面","authors":"E. Zell, M. Botsch","doi":"10.1145/2486042.2486045","DOIUrl":null,"url":null,"abstract":"In this paper we present ElastiFace, a simple and versatile method for establishing correspondence between textured face models, either for the construction of a blend-shape facial rig or for the exploration of new characters by morphing between a set of input models. While there exists a wide variety of approaches for inter-surface mapping and mesh morphing, most techniques are not suitable for our application: They either require the insertion of additional vertices, are limited to topological planes or spheres, are restricted to near-isometric input meshes, and/or are algorithmically and computationally involved. In contrast, our method extends linear non-rigid registration techniques to allow for strongly varying input geometries. It is geometrically intuitive, simple to implement, computationally efficient, and robustly handles highly non-isometric input models. In order to match the requirements of other applications, such as recent perception studies, we further extend our geometric matching to the matching of input textures and morphing of geometries and rendering styles.","PeriodicalId":204343,"journal":{"name":"International Symposium on Non-Photorealistic Animation and Rendering","volume":"Spec No 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"ElastiFace: matching and blending textured faces\",\"authors\":\"E. Zell, M. Botsch\",\"doi\":\"10.1145/2486042.2486045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present ElastiFace, a simple and versatile method for establishing correspondence between textured face models, either for the construction of a blend-shape facial rig or for the exploration of new characters by morphing between a set of input models. While there exists a wide variety of approaches for inter-surface mapping and mesh morphing, most techniques are not suitable for our application: They either require the insertion of additional vertices, are limited to topological planes or spheres, are restricted to near-isometric input meshes, and/or are algorithmically and computationally involved. In contrast, our method extends linear non-rigid registration techniques to allow for strongly varying input geometries. It is geometrically intuitive, simple to implement, computationally efficient, and robustly handles highly non-isometric input models. In order to match the requirements of other applications, such as recent perception studies, we further extend our geometric matching to the matching of input textures and morphing of geometries and rendering styles.\",\"PeriodicalId\":204343,\"journal\":{\"name\":\"International Symposium on Non-Photorealistic Animation and Rendering\",\"volume\":\"Spec No 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Non-Photorealistic Animation and Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2486042.2486045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Non-Photorealistic Animation and Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486042.2486045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在本文中,我们提出了ElastiFace,一种简单而通用的方法,用于在纹理面部模型之间建立对应关系,用于构建混合形状的面部rig或通过在一组输入模型之间变形来探索新字符。虽然存在各种各样的表面间映射和网格变形方法,但大多数技术都不适合我们的应用:它们要么需要插入额外的顶点,被限制在拓扑平面或球体上,被限制在近等距输入网格上,和/或涉及算法和计算。相比之下,我们的方法扩展了线性非刚性配准技术,以允许强烈变化的输入几何形状。它在几何上直观,易于实现,计算效率高,并且健壮地处理高度非等距输入模型。为了满足其他应用的需求,例如最近的感知研究,我们进一步将几何匹配扩展到输入纹理的匹配以及几何形状和渲染样式的变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ElastiFace: matching and blending textured faces
In this paper we present ElastiFace, a simple and versatile method for establishing correspondence between textured face models, either for the construction of a blend-shape facial rig or for the exploration of new characters by morphing between a set of input models. While there exists a wide variety of approaches for inter-surface mapping and mesh morphing, most techniques are not suitable for our application: They either require the insertion of additional vertices, are limited to topological planes or spheres, are restricted to near-isometric input meshes, and/or are algorithmically and computationally involved. In contrast, our method extends linear non-rigid registration techniques to allow for strongly varying input geometries. It is geometrically intuitive, simple to implement, computationally efficient, and robustly handles highly non-isometric input models. In order to match the requirements of other applications, such as recent perception studies, we further extend our geometric matching to the matching of input textures and morphing of geometries and rendering styles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantifying visual abstraction quality for stipple drawings Real-time panorama maps Depth-aware neural style transfer Pigment-based recoloring of watercolor paintings A generic framework for the structured abstraction of images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1